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Sammendrag

Siden introduksjonen i 1970-̊arene har ultralyd blitt ett av de viktigste verktøyene for
p̊avisning av hjertesykdommer. De fleste ultralydundersøkelser er hurtige og smertefrie.
Ultralydapparatene har tradisjonelt vært store og komplekse systemer, og det har vært
nødvendig med omfattende opplæring og erfaring for å anvende dem. Fra årtusenskiftet
har det blitt utviklet mindre og mer tilgjengelige ultralydapparater. Dette har resultert i
lansering av flere h̊andholdte systemer. Disse apparatene har et enkelt brukergrensesnitt og
relativt lav pris. En forventer at de ogs̊a vil bli brukt av klinikere med mindre ultralyderfaring
enn det som har vært tilfelle med de store skannerne.

Parallelt med utviklingen av h̊andholdte systemer har det vært gjort store fremskritt
p̊a sanntids 3D-avbildning med ultralyd. Mye av teknologien som har inng̊att i de nye 3D-
systemene, har ogs̊a spilt en nøkkelrolle i miniatyriseringen til h̊andholdte systemer. For
sanntids 3D bildesegmentering har det blitt utviklet en svært effektiv algoritme basert p̊a
deformerbare modeller og Kalmanfilter. Denne løsningen burde være egnet for bruk p̊a
de minste systemene, hvor krav til beregningseffektivitet er høye. Vi har derfor undersøkt
hvorvidt denne metoden ogs̊a kan være egnet i sanntids brukerstøttesystemer for h̊andholdte
ultralydskannere. Eksempler p̊a anvendelser av h̊andholdt ultralyd innen ekkokardiografi,
vil være å vurdere venstre hovedkammers (venstre ventrikkels) pumpefunksjon og å oppdage
økning i hjertemuskemasse (hypertrofi). Venstre ventrikkels pumpefunksjon har vi vurdert
ved hjelp av en algoritme som måler hvor mye klaffeplanet i hjertet beveger seg opp og
ned gjennom en hjertesyklus. Sykelig hypertrofi innebærer at hjertets muskelmasse vokser,
uten at det pumper bedre. Vi har utviklet og testet en algoritme for å oppdage hypertrofi
ved å måle tykkelsen av ventrikkel septum, som er skilleveggen mellom hjertets høyre og
venstre hovedkammer. Begge algoritmene synes å ha en nøyaktighet god nok til en hurtig
undersøkelse, men de erstatter ikke en erfaren kardiolog med en ordinær skanner. For å
slippe å bruke elektrokardiogram-elektrodene som finnes p̊a større skannere, har vi utviklet
en algoritme som automatisk finner ut hvor lang hjertesykelen er, og i tillegg, n̊ar den starter.
Alle algoritmene over betinger at man har et godt opptak av hjertet for analysen. Vi har
anvendt Kalmanfilteret til å lage et system for å gjenkjenne standardbilder av hjertet. En
videreutvikling av dette, er en assistent for å hjelpe brukeren til å ta et av de vanligste og
mest informative standardsnittene, det apikale firekammerbildet.

Formålet med alle disse algoritmene er å gjøre det enklere, spesielt for ikke-eksperter,
å ta gode ultralydbilder av hjertet og hente ut nyttig kvantitativ informasjon ved hjelp av
h̊andholdte ultralydsystemer. V̊are resultater tilsier at Kalmanfilterbasert segmentering kan
være et viktig bidrag til brukerstøttesystemer for h̊andholdte skannere.

Sten Roar Snare
Institutt for Sirkulasjon og Bildediagnostikk
Hovedveileder: Hans Torp
Biveiledere: Bjørn Olav Haugen og Svein Arne Aase
Finansieringskilde: BIA (brukerstyrt innovasjonsarena) prosjekt støttet av Norges Forskn-
ingsr̊ad med GE Vingmed Ultrasound som industripartner.

Ovennevnte avhandling er funnet verdig til å forsvares offentlig for graden Philosophiae
Doctor (PhD) i medisinsk teknologi. Disputas finner sted i Øya Helsehus (ØHA11) , torsdag
14. april kl. 12:15.
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Abstract

Medical ultrasound is widely used within the field of cardiology. The pocket-sized
ultrasound scanners with performance suitable for echocardiography represent one of the
latest developments within ultrasound technology. It is forecasted that these scanners will
be operated also by users with less experience than what has been the case for full-size
scanners. Additionally, pocket-sized devices have less possibilities for user interaction due
to the reduced screen size and limited space for buttons and sliders. It is likely that these
scanners would benefit from having algorithms aiding the user to capture and interpret the
images.

For 3D cardiac segmentation, an efficient Kalman filtering based approach has previously
been developed and shown to operate in real-time on a commercial scanner. By reducing
the problem to two dimensions, this approach could probably be used to provide real-time
segmentation also on pocket-sized scanners. We have developed and tested Kalman filter
based solutions for improved image acquisition and quantification of some selected parameters
related to left ventricle size and performance. The algorithms are intended for use with
pocket-sized ultrasound devices.

The main contributions of this thesis are:

• An automatic method for measuring the mitral annulus excursion, using a combination
of low frame rate speckle tracking and model based segmentation.

• A novel method for semiautomatic measurement of interventricular septal thickness
using a model based Kalman filter approach.

• A timing algorithm for estimation of cardiac cycle length and cycle start without using
electrocardiography (ECG).

• Methods for recognizing standard apical echocardiographic views and assisting the user
to find the apical four-chamber view during acquisition.

The mitral annulus excursion and septal thickness measurement projects were evaluated
using patient ultrasound recordings and manual cardiologist measurements as reference
values. In case of mitral annulus excursion measurements, the accuracy of the automatic
algorithm was comparable to results published by other researchers. Regarding measurements
of septal thickness, the algorithm accuracy was comparable to the discrepancy between
two cardiologists. Although designed for automatic operation, the algorithm turned out
to frequently require manual interaction due to unsatisfactory automatic initialization. The
timing algorithm robustly identified cardiac cycle length in more than 91% and cycle start
in more than 77% of the 11866 test cases extracted from patient data. The view detection
method was tested on 37 patient recordings and correctly classified 87% of the standard views.
Using the scan assistant, ten medical students managed to capture clinically acceptable apical
four-chamber recordings in 85% of the cases, compared to 55% without the scan assistant.
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scanners. Additionally, pocket-sized devices have less possibilities for user interaction due
to the reduced screen size and limited space for buttons and sliders. It is likely that these
scanners would benefit from having algorithms aiding the user to capture and interpret the
images.

For 3D cardiac segmentation, an efficient Kalman filtering based approach has previously
been developed and shown to operate in real-time on a commercial scanner. By reducing
the problem to two dimensions, this approach could probably be used to provide real-time
segmentation also on pocket-sized scanners. We have developed and tested Kalman filter
based solutions for improved image acquisition and quantification of some selected parameters
related to left ventricle size and performance. The algorithms are intended for use with
pocket-sized ultrasound devices.

The main contributions of this thesis are:

• An automatic method for measuring the mitral annulus excursion, using a combination
of low frame rate speckle tracking and model based segmentation.

• A novel method for semiautomatic measurement of interventricular septal thickness
using a model based Kalman filter approach.

• A timing algorithm for estimation of cardiac cycle length and cycle start without using
electrocardiography (ECG).

• Methods for recognizing standard apical echocardiographic views and assisting the user
to find the apical four-chamber view during acquisition.

The mitral annulus excursion and septal thickness measurement projects were evaluated
using patient ultrasound recordings and manual cardiologist measurements as reference
values. In case of mitral annulus excursion measurements, the accuracy of the automatic
algorithm was comparable to results published by other researchers. Regarding measurements
of septal thickness, the algorithm accuracy was comparable to the discrepancy between
two cardiologists. Although designed for automatic operation, the algorithm turned out
to frequently require manual interaction due to unsatisfactory automatic initialization. The
timing algorithm robustly identified cardiac cycle length in more than 91% and cycle start
in more than 77% of the 11866 test cases extracted from patient data. The view detection
method was tested on 37 patient recordings and correctly classified 87% of the standard views.
Using the scan assistant, ten medical students managed to capture clinically acceptable apical
four-chamber recordings in 85% of the cases, compared to 55% without the scan assistant.
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Chapter 1

Introduction
Sten Roar Snare
Dept. Circulation and Medical Imaging, NTNU

1.1 Background and Motivation

Portable Ultrasound

Since the introduction in the 1970’s, ultrasound as medical imaging modality has
become one of the most important tools for detection of cardiac disease. The
advantages, such as low cost, low risk and real-time images have made ultrasound
the modality of choice for an extensive number of clinical applications. Since
the late 1990’s, portable ultrasound scanners have entered the market. In the
echocardiographic literature, they are often termed Hand-Carried Ultrasound (HCU)
devices. HCU scanners are typically battery operated and at the size of a laptop, or
even a bit smaller. By using a carrying bag or shoulder strap, the system becomes
portable. In the scanning setting, the scanner has to be placed on a table or similar.

The first HCU unit was presented as early as in 1978 (Minivisor, Organon Teknica)
from the Thoraxcenter group in the Netherlands [1]. The Rochester group displayed
their Scan Mate (Damon Corp) sector scanner in 1988. None of these devices were
clinically accepted [2]. The main reason for this was poor image quality. During
the 1990’s, ultrasound technology was progressing rapidly forwards, making the
leap to clinically feasible real-time 3D/4D ultrasound on commercial systems. At
the same time as the high end systems grew more advanced, there was a trend
towards developing smaller and less expensive systems meant for bedside use. In
the period around year 2000, both SonoSite and Philips launched what they presented
as handheld systems (SonoSite 180 and OptiGo respectively). In 2002, the American
Society of Echocardiography (ASE) released their recommendations regarding these
new systems [3] and introduced the term Hand-Carried Ultrasound (HCU). It was
recommended to use HCU as an extension of the physical exam, and that users
should have at least ASE ”Level 1” of training before performing echocardiographic
investigations.

In recent years, the development of HCU systems has started to diverge. Some
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1.1. Background and Motivation

HCU systems get more functionality, including pulsed and continuous wave Doppler,
M-mode and harmonic imaging. The other branch of systems is focusing towards
further miniaturization. October 20th 2009, Jeff Immelt, being the vice president
of General Electric, unveiled the latest of the portable ultrasound devices, the GE
Vscan. Two years earlier, Siemens/Acuson launched their P10 and Direct Medical
Systems their InNovaSound. Both the Vscan and the P10 are pocket-sized multi
purpose scanners with decent image quality, harmonic imaging and frame rates suitable
for cardiac applications. The Vscan also offers color flow functionality for blood flow
visualization. The small size of the scanners makes them fit into the clinicians pocket.
They can be operated using one hand to hold the scanner and one hand to hold the
probe. Throughout this thesis we will use the term Pocket-Sized Ultrasound (PSU)
devices to describe such scanners. In the literature these systems are also frequently
encountered as handheld or PDA (personal digital assistant) type systems.

The number of sold HCU units in US has increased from 870 in year 2000 to
7500 units in 2008 [4]. The cost of a laptop-sized system is typically ranging from
15.000$ and upwards to 50-60.000$. Being fresh additions to the portable ultrasound
market, the PSU systems do not make up a large share of the sold portable units.
In 2008, one year after the introduction of InNovaSound and P10, only 125 of the
7500 portable units sold in the US were PSU systems. The selling price of less than
10.000$ is also lower than for typical HCU devices. The market forecast by Klein
biomedical consultants [4] suggests that possible end users for the PSU systems will be
physicians (family/general practice, internists, cardiologists, OB/GYN and emergency
medicine) and maybe emergency medical services/technicians. They estimate the total
addressable market for PSU devices in the US alone to be more than 1.5 Million units.
In these estimates it was even assumed that PSU devices will not make it into the
hospitals. In 2008, the forecast was fast unit growth from 125 PSU units in 2008 to
4570 units in 2013, combined with a drop in the average selling price from $8100 to
$5300. This corresponds to an increase in revenues of 88%, which by far makes this
the most rapidly growing segment in medical ultrasound.

Since 2002, numerous papers have been published on portable ultrasound. These
devices cause great interest in many clinical fields of application. Within cardiology,
HCU/PSU has been used for detection of hypertrophy, assessing LV chamber and wall
dimensions, LV regional and global function and morphological abnormalities of the
valves [5–15]. Most of the papers conclude that HCU/PSU has great potential and
additional value provided that sufficient training is given. Spencer [16] was a bit more
critical in his review paper, pointing out the danger of abusing the new technology.
Being a valid concern, still the number of publications listing positive experiences with
HCU devices suggests that such equipment has a future within cardiology, provided
proper training [17]. Similar conclusions are drawn within radiology [18, 19] and
emergency care [20, 21]. There are several publications specifically addressing PSU
systems, presenting thoughts and considerations related to the latest step on the
miniaturization scale [2, 5, 6, 9, 10, 12, 14, 15, 18, 19, 22, 23]. Not all of the published
studies have actually used PSU equipment in their studies. The authors in [5, 10, 15]
used PSU devices for their studies on cardiac size and function, and they reported good
results. Cardim et al. [6] investigated how the use of a PSU device as an extension of
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Chapter 1. Introduction

the physical examination changed the workflow in an outpatient clinic. Giusca et al.
[9] tested the usefulness of PSU when operated by cardiology trainees and found it to
be helpful, although not a replacement for a standard examination. A similar study
using a more limited protocol and expert users was published in [12]. Pozza et al. [22]
compared PSU, HCU and regular scanners in a pediatric cardiology setting and found
the image quality of the PSU to be inferior, while still claiming that the PSU unit
could be helpful in certain clinical settings. These results were also discussed in the
editorial paper of Kimura [23], where the author raised the important question of what
defines an echo machine? The answer to that question is essential for how to compare
and test PSU equipment, where screen size and temporal resolution has been traded
off to gain portability and usability. The European Association of Echocardiography
has recently also published a position paper [24] providing recommendations on the
use of PSU devices.

Operating a full-size scanner properly requires long experience and extensive
training. If the market predictions and forecasts for PSU systems are correct, these
scanners will most likely be operated also by clinicians less experienced with use of
ultrasound equipment. One of the main uncertainties is whether non-expert users will
be able to conduct a proper clinical ultrasound examination. The amount of training
which should qualify for performing PSU investigations is a research topic for itself,
but to require the same level of training for all users of PSU systems is likely to be
economically and practically intractable. It is forecasted that non-expert PSU users
frequently will perform focused ultrasound examinations, such as FAST [25] or CAUSE
[26]. In case of focused ultrasound, tailored and less comprehensive training protocols
could be adopted [27]. In addition, the scanners should be equipped with functionality
to aid the user when performing focused examinations. The relation between PSU and
regular scanners can be compared to the relation between compact digital cameras and
complex single lens reflex (SLR) cameras. The potential for taking superb images is
higher for the SLR camera, while the compact camera, with its user friendliness, may
be the better solution for less experienced users.

First and foremost, the acquired image must have acceptable quality. In
echocardiography this translates to, in addition to having correct image settings,
getting a proper acoustic window and angling the probe such that the anatomy is
shown correctly on the screen. An algorithm aiding the user to acquire clinically
acceptable images would be of great interest. Such functionality can be implemented
either as user feedback from the scanner during the acquisition, or as a post-processing
step to quality check or identify views in already recorded material. The first solution
has the advantage that the user gets real-time information and can continuously adjust
the probe position to get the required view. One disadvantage is that the real-time
requirement puts restrictions on the complexity of the algorithms to be run. Another
problem may be that, in the worst case, the user feedback can disturb the user
while struggling to find the optimal view. View detection work in the literature is
mostly restricted to offline post-processing algorithms to identify views from a dataset
containing different standard views. Various approaches have been presented, such as
model template fit combined with support vector machines [28], multiresolution elastic
registration [29] and hierarchical classification [30]. The, to our best knowledge, most
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echocardiography this translates to, in addition to having correct image settings,
getting a proper acoustic window and angling the probe such that the anatomy is
shown correctly on the screen. An algorithm aiding the user to acquire clinically
acceptable images would be of great interest. Such functionality can be implemented
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the physical examination changed the workflow in an outpatient clinic. Giusca et al.
[9] tested the usefulness of PSU when operated by cardiology trainees and found it to
be helpful, although not a replacement for a standard examination. A similar study
using a more limited protocol and expert users was published in [12]. Pozza et al. [22]
compared PSU, HCU and regular scanners in a pediatric cardiology setting and found
the image quality of the PSU to be inferior, while still claiming that the PSU unit
could be helpful in certain clinical settings. These results were also discussed in the
editorial paper of Kimura [23], where the author raised the important question of what
defines an echo machine? The answer to that question is essential for how to compare
and test PSU equipment, where screen size and temporal resolution has been traded
off to gain portability and usability. The European Association of Echocardiography
has recently also published a position paper [24] providing recommendations on the
use of PSU devices.

Operating a full-size scanner properly requires long experience and extensive
training. If the market predictions and forecasts for PSU systems are correct, these
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1.1. Background and Motivation

recent publication addressing cardiac view detection, is the work by Park et al. [31]
who applied a solution based on machine learning from an annotated database and
got a classification accuracy of 96%. Orderud et al. [32] published related work
on automatic alignment of standard views in 3D echocardiography using an efficient
extended Kalman filter.

In addition to getting the correct view, quantification on a PSU device is inherently
more difficult due to the small screen and few knobs/sliders. The scanner should
thus have functionality to aid the user when making some of the most common
measurements.

Left ventricle contractility has traditionally been measured using the Ejection
Fraction (EF) 1. Using two dimensional ultrasound, the EF measurement typically
involves manual tracing of the left ventricle cavity in one or multiple projections of
the heart. The tracings are then used to calculate EF, either by area or volume ratios
using Simpson’s rule. With the advent of 3D ultrasound, EF can be found without
assuming a particular geometry. In case of PSU devices, three dimensional imaging is
not yet available, and manual tracing is unpractical. Correct measurement of EF also
requires recordings where the complete left ventricle is visible, which can be difficult
to achieve for non-expert users. Another way of measuring left ventricle contractility
is to use the mitral annulus excursion. This is a measurement of how much the
mitral annulus moves towards the cardiac apex during the systole. This has shown
to be a valuable measure of cardiac contractile performance, and has been shown to
correlate well with EF [33–36]. This measurement does not require the complete left
ventricle to be visible in the image and should thus be more suitable for non-expert
users. Several authors have published semi-automatic approaches for mitral annulus
excursion measurements. Nevo et al. [37] presented a low frame rate (25Hz) method
based on dynamic programming combined with apodized block matching. Eto et al.
[38] presented a high frame rate speckle tracking approach, using manual initialization.
Some studies based on the commercial Philips QLab high framerate speckle tracking
system [39], which also utilizes manual initialization, have also been presented [33, 34].

In cardiology, hypertrophy means that segments of the heart is growing. This can
be due to exercise or pathology. In the latter case, the muscle gets bigger while
the contractility is reduced. Local hypertrophies can also obstruct normal blood
flow or cause valvular problems [40]. Pathologic compensatory hypertrophy can be
caused by hypertension over a longer period of time. Another disease state where
there is pathological hypertrophy of the left ventricle is hypertrophic cardiomyopathy
(HCM). HCM is often characterized by asymmetric septal hypertrophy, frequently
close to the aortic tract [40, 41]. Hypertrophy increases the risk for adverse cardiac
events and heart failure [42]. Patients with isolated septal hypertrophy, without
increased LV mass, have a higher prevalence for diastolic dysfunction and arrhythmias
[43]. According to the American College of Cardiology Foundation/American Heart
Association guidelines [44], echocardiography may be used to detect hypertrophy also
in asymptomatic patients.

Hypertrophy is commonly diagnosed by estimation of LV mass. In 2D

1EF = EDvolume−ESvolume
EDvolume
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Chapter 1. Introduction

echocardiography, formulas exist which take septal and posterior wall thickness
together with ventricular diameter as input to calculate LV mass [45]. It is common to
use M-mode and caliper functionality to do this measurement. As an approximation,
sometimes only the septal thickness measurement is made. A normal septum is
approximately 1cm thick [46]. There have been few attempts to automize this
measurement. Moladoust et al. [47] used an adaptive thresholding scheme to measure
septum thickness in apical images. Subramanian et al. [48] did the measurement in
parasternal views, applying a variant of the active shape algorithm with local region
based segmentation energy.

Both mitral annulus excursion and LV mass measurements rely on identification
of the cardiac cycle. Mitral annulus excursion measurements require identification of
both end diastole and end systole, while LV mass can be estimated using measurements
from the end diastole only. In case of mitral annulus excursion, by ignoring cases of
post-systolic shortening, it is possible to directly use the maximum and minimum
values of the excursion during a complete cardiac cycle. Still, the cardiac cycle length
has to be estimated. This introduces some challenges for PSU equipment, as these
devices do not have the option of connecting electrocardiogram (ECG) leads for cardiac
cycle detection. Thus, manual cycle definition or a different automatic approach must
be chosen. Previous research on cardiac cycle identification has been related to fetal
ultrasound [49–51]. Due to the high heart rates and little respiratory motion, longer
sequences with many heart cycles can be used. This enables the use of for instance
Fourier analysis. In case of adults, the problem is slightly different because of the
slower heart rate and respiratory motion. The number of cardiac cycles which can be
present in the input signal for cycle identification is limited and other solutions must
be considered.

Segmentation schemes in ultrasound

In order to make user assistance algorithms for ultrasound, it is frequently necessary
to apply automatic segmentation schemes for identification of interesting regions or
objects in the image. This problem of image segmentation in echocardiographic images
has been an extensively studied topic for decades, and numerous solutions have been
presented. A full review of all the possible algorithms is out of the scope of this thesis,
and the interested reader is recommended to consult the excellent review papers by
Noble et al. [52] or Hammoude et al. [53]. Algorithms studied in the literature
include schemes based on artificial neural networks (ANN), level sets/fast marching
methods, fuzzy logic, mathematical morphology and various region- and pixel-based
classification based algorithms. In this section, we will briefly mention some selected
terms and solutions.

Cost function based methods rely on minimizing a cost or energy function for finding
the most probable border through an edge map identified by an edge operator. By
incorporating prior knowledge into the cost function, it is possible to correctly segment
the structure of interest by applying an optimization procedure. The computation time
and accuracy is tightly connected to the size and accuracy of the search space for the
optimization problem.
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1.1. Background and Motivation

Cost function schemes can also be applied to active contour models. In these cases
the structure of interest is modeled as a deformable curve, which is then fitted to the
image data using cost minimization. This approach can be implemented efficiently,
but is often sensitive to initialization. The methods are suitable for extensions to
incorporate time and the third dimension. Various optimization schemes [52] have been
applied, such as gradient descent techniques, Newton/quasi-Newton methods, dynamic
programming or genetic algorithms. Methods based on statistical/probabilistic theory,
such as simulated annealing, maximum likelihood or maximum a posteriori (MAP)
estimation, are also frequently encountered. The cost functions can contain a number
of different terms. External terms such as intensity gradients, energy (gray level
statistics, Rayleigh distribution), phase information, regional forces, optical flow and
speckle statistics have all been applied [52, 53]. The cost functions can also have
internal terms, such as curve shape/smoothness and temporal regularization. This
ensures sensible shapes and motion, and can be used to make the model compliant
with prior knowledge.

By using active shape models (ASM) as contours, it is possible to incorporate more
prior knowledge into the model. This can make the segmentation scheme faster by
reducing the numbers of parameters to estimate. However, it can also cause problems
when encountering new pathologies which were not included in the training set. A
popular extension of ASM, using prior information about intensities, is called active
appearance modeling (AAM). Bosch et al. [54] extended the AAM to what they
named active appearance motion model (AAMM), which incorporates motion as well.
An advantage of this approach could be that principal component analysis (PCA) is
used to model temporal patterns, as well as spatial patterns. This makes it possible
to include more prior information about movement into the segmentation scheme.
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Chapter 1. Introduction

1.2 Aims of study

Since the advent of pocket-sized ultrasound devices, one of the main uncertainties has
been whether non-expert users will be able to use the equipment correctly. Compared
to full-size scanners, pocket-sized systems have reduced temporal resolution, smaller
screens, less possibilities for interfacing the user and, most likely, a more diverse user
population. This work aims to investigate whether algorithms based on real-time
Kalman filter segmentation can be used to improve the usability and user friendliness
of pocket-sized ultrasound systems, in particular when operated by less experienced
users. Although it is not an aim to implement the algorithms on a physical pocket-sized
scanner, they should be fast and suitable for operation with such devices.

More detailed, the work aims to:

• Assist the user in measuring left ventricle systolic function.

• Assist the user to detect hypertrophy.

• Investigate whether it is possible to automatically detect cardiac cycle length
and start, without using an electrocardiogram.

• Aid the user in capturing and recognizing a good apical view for left ventricle
analysis

1.3 Summary of presented work

All of the presented algorithms are using the Kalman filter, either alone (Chapters 4,
6 and 7) or in combination with other techniques, such as speckle tracking (Chapter 3)
or intensity analysis and database lookup (Chapter 5). The Kalman filter is described
in detail in Chapter 2. We have applied an extended Kalman filter with non-uniform
rational B-spline models. In general, the Kalman filter has proved fast, flexible and
robust to noise. None of the algorithms used more than 7.7ms computation time per
frame. The flexibility of the algorithm has been illustrated in the septum thickness
and view detection work, where a transform hierarchy and multiple submodels have
been used to create more complex anatomical models.

1.3.1 Contribution 1 - Mitral annulus excursion measurement
(Chapter 3)

Mitral annulus excursion is often used as an indicator of the global left ventricle
contractile function. On full-size scanners, this distance measurement is normally
made using M-mode or anatomic M-mode. More recently, speckle tracking based
algorithms, such as the algorithm in the Philips Qlab quantification system [39], have
also become commercially available.

On PSU devices, due to the limited temporal resolution, it can be difficult to
generate anatomic M-mode images. Even if making anatomic M-mode was feasible,
due to the lack of mouse/touch pad and the small screen, it would be challenging to

7

Chapter 1. Introduction

1.2 Aims of study

Since the advent of pocket-sized ultrasound devices, one of the main uncertainties has
been whether non-expert users will be able to use the equipment correctly. Compared
to full-size scanners, pocket-sized systems have reduced temporal resolution, smaller
screens, less possibilities for interfacing the user and, most likely, a more diverse user
population. This work aims to investigate whether algorithms based on real-time
Kalman filter segmentation can be used to improve the usability and user friendliness
of pocket-sized ultrasound systems, in particular when operated by less experienced
users. Although it is not an aim to implement the algorithms on a physical pocket-sized
scanner, they should be fast and suitable for operation with such devices.

More detailed, the work aims to:

• Assist the user in measuring left ventricle systolic function.

• Assist the user to detect hypertrophy.

• Investigate whether it is possible to automatically detect cardiac cycle length
and start, without using an electrocardiogram.

• Aid the user in capturing and recognizing a good apical view for left ventricle
analysis

1.3 Summary of presented work

All of the presented algorithms are using the Kalman filter, either alone (Chapters 4,
6 and 7) or in combination with other techniques, such as speckle tracking (Chapter 3)
or intensity analysis and database lookup (Chapter 5). The Kalman filter is described
in detail in Chapter 2. We have applied an extended Kalman filter with non-uniform
rational B-spline models. In general, the Kalman filter has proved fast, flexible and
robust to noise. None of the algorithms used more than 7.7ms computation time per
frame. The flexibility of the algorithm has been illustrated in the septum thickness
and view detection work, where a transform hierarchy and multiple submodels have
been used to create more complex anatomical models.

1.3.1 Contribution 1 - Mitral annulus excursion measurement
(Chapter 3)

Mitral annulus excursion is often used as an indicator of the global left ventricle
contractile function. On full-size scanners, this distance measurement is normally
made using M-mode or anatomic M-mode. More recently, speckle tracking based
algorithms, such as the algorithm in the Philips Qlab quantification system [39], have
also become commercially available.

On PSU devices, due to the limited temporal resolution, it can be difficult to
generate anatomic M-mode images. Even if making anatomic M-mode was feasible,
due to the lack of mouse/touch pad and the small screen, it would be challenging to

7

Chapter 1. Introduction

1.2 Aims of study

Since the advent of pocket-sized ultrasound devices, one of the main uncertainties has
been whether non-expert users will be able to use the equipment correctly. Compared
to full-size scanners, pocket-sized systems have reduced temporal resolution, smaller
screens, less possibilities for interfacing the user and, most likely, a more diverse user
population. This work aims to investigate whether algorithms based on real-time
Kalman filter segmentation can be used to improve the usability and user friendliness
of pocket-sized ultrasound systems, in particular when operated by less experienced
users. Although it is not an aim to implement the algorithms on a physical pocket-sized
scanner, they should be fast and suitable for operation with such devices.

More detailed, the work aims to:

• Assist the user in measuring left ventricle systolic function.

• Assist the user to detect hypertrophy.

• Investigate whether it is possible to automatically detect cardiac cycle length
and start, without using an electrocardiogram.

• Aid the user in capturing and recognizing a good apical view for left ventricle
analysis

1.3 Summary of presented work

All of the presented algorithms are using the Kalman filter, either alone (Chapters 4,
6 and 7) or in combination with other techniques, such as speckle tracking (Chapter 3)
or intensity analysis and database lookup (Chapter 5). The Kalman filter is described
in detail in Chapter 2. We have applied an extended Kalman filter with non-uniform
rational B-spline models. In general, the Kalman filter has proved fast, flexible and
robust to noise. None of the algorithms used more than 7.7ms computation time per
frame. The flexibility of the algorithm has been illustrated in the septum thickness
and view detection work, where a transform hierarchy and multiple submodels have
been used to create more complex anatomical models.

1.3.1 Contribution 1 - Mitral annulus excursion measurement
(Chapter 3)

Mitral annulus excursion is often used as an indicator of the global left ventricle
contractile function. On full-size scanners, this distance measurement is normally
made using M-mode or anatomic M-mode. More recently, speckle tracking based
algorithms, such as the algorithm in the Philips Qlab quantification system [39], have
also become commercially available.

On PSU devices, due to the limited temporal resolution, it can be difficult to
generate anatomic M-mode images. Even if making anatomic M-mode was feasible,
due to the lack of mouse/touch pad and the small screen, it would be challenging to

7

Chapter 1. Introduction

1.2 Aims of study

Since the advent of pocket-sized ultrasound devices, one of the main uncertainties has
been whether non-expert users will be able to use the equipment correctly. Compared
to full-size scanners, pocket-sized systems have reduced temporal resolution, smaller
screens, less possibilities for interfacing the user and, most likely, a more diverse user
population. This work aims to investigate whether algorithms based on real-time
Kalman filter segmentation can be used to improve the usability and user friendliness
of pocket-sized ultrasound systems, in particular when operated by less experienced
users. Although it is not an aim to implement the algorithms on a physical pocket-sized
scanner, they should be fast and suitable for operation with such devices.

More detailed, the work aims to:

• Assist the user in measuring left ventricle systolic function.

• Assist the user to detect hypertrophy.

• Investigate whether it is possible to automatically detect cardiac cycle length
and start, without using an electrocardiogram.

• Aid the user in capturing and recognizing a good apical view for left ventricle
analysis

1.3 Summary of presented work

All of the presented algorithms are using the Kalman filter, either alone (Chapters 4,
6 and 7) or in combination with other techniques, such as speckle tracking (Chapter 3)
or intensity analysis and database lookup (Chapter 5). The Kalman filter is described
in detail in Chapter 2. We have applied an extended Kalman filter with non-uniform
rational B-spline models. In general, the Kalman filter has proved fast, flexible and
robust to noise. None of the algorithms used more than 7.7ms computation time per
frame. The flexibility of the algorithm has been illustrated in the septum thickness
and view detection work, where a transform hierarchy and multiple submodels have
been used to create more complex anatomical models.

1.3.1 Contribution 1 - Mitral annulus excursion measurement
(Chapter 3)

Mitral annulus excursion is often used as an indicator of the global left ventricle
contractile function. On full-size scanners, this distance measurement is normally
made using M-mode or anatomic M-mode. More recently, speckle tracking based
algorithms, such as the algorithm in the Philips Qlab quantification system [39], have
also become commercially available.

On PSU devices, due to the limited temporal resolution, it can be difficult to
generate anatomic M-mode images. Even if making anatomic M-mode was feasible,
due to the lack of mouse/touch pad and the small screen, it would be challenging to

7



1.3. Summary of presented work

do a reliable mitral annulus excursion measurement using a caliper function. Regular
speckle tracking is also non-trivial. Due to the low frame rate, image speckle may move
significantly between frames. We developed a fully automatic solution which combines
speckle tracking and left ventricle Kalman filter segmentation to make a robust mitral
annulus excursion estimate.

The algorithm was tested using 30 PSU and 29 HCU apical four-chamber recordings
made by a cardiologist, who also did reference measurements. The algorithm was
tested in both fully automatic and semi-automatic operation. In case of automatic
operation, the algorithm was run using a batch script. After two full cardiac cycles,
the reported mitral annulus excursion value was stored together with an image of
the displacement curve. Only tracking the septal part of the mitral annulus was also
tested, as the image quality generally is better on the septal side of the apical four-
chamber images. During semi-automatic operation, a second cardiologist, blinded to
the reference values, operated the algorithm offline on a regular laptop. He had the
option of doing corrections to the initialization and to turn off lateral point tracking.
Using PSU data, 15 of 30 recordings were then processed fully automatic. For the HCU
device the number was lower, as only 5 of 29 recordings were processed without human
interaction. The most common correction was re-initialization of tracking points or
disabling the lateral point tracking.

Comparing the automatic PSU results to the anatomic M-mode reference
measurements, a paired t-test revealed an error of −1.80 ± 1.96mm when both the
lateral and septal side of the mitral annulus were tracked and −0.27± 1.89mm when
only using the septal side. When tested with HCU recordings, the results were only
slightly improved. Allowing for manual interaction, the errors were reduced to −1.57±
1.72mm when using PSU. We found the algorithm results to be underestimated when
the lateral point was included, which is similar to previously published comparisons
between speckle tracking and anatomic M-mode based measurements [62]. The
standard deviation was less than 2mm, which should be considered acceptable given
the image quality and number of patients included in the study. The results suggest
that the algorithm measures MAE using PSU data with an accuracy suitable for rapid
assessment of left ventricle systolic performance.

This topic is described in the paper ”Fast automatic measurement of mitral
annulus excursion using a pocket-sized ultrasound system” accepted for publication
in Ultrasound in Medicine and Biology. The paper is a joint work with Ole Christian
Mjølstad, who performed the ultrasound examinations and contributed significantly
to the data analysis.

1.3.2 Contribution 2 - Measurement of septal thickness (Chap-
ter 4)

Septal thickness can be used as a parameter to detect LV septal hypertrophy [46].
LV hypertrophy is an important risk factor for cardiac events [42] and should thus be
detected as early as possible. Septum thickness should preferably be measured at end
diastole using the parasternal long-axis view [46]. It is common to do the measurement
using M-mode or anatomic M-mode. Using a regular scanner, this can be performed
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directly after acquisition or on a workstation after the exam. The measurement should
be made at the level of the mitral valve tip.

We developed an algorithm based on coupled parametric models of the septum,
mitral valve leaflet and aortic outlet tract. All the models are arranged in a transform
hierarchy, in order to fit with the parasternal long-axis view. The control points of
the parametric curves and the geometric transform parameters are used as states in
a Kalman filter. The Kalman filter uses edge measurements and speckle tracking
as input. Accurate measurement of septal thickness requires correct handling of
structures which are not parts of the septum. Including trabeculae and the moderator
band in the measurement will cause overestimation. We addressed these problems
by making the models stiffer in regions where the comibation of these structures and
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1.3. Summary of presented work

at certain steps in the cardiac cycle, such as the end-diastole. For cycle length
estimation, a sum of absolute differences (SAD) based algorithm is applied to intensity
curves extracted from different parts of the image. The resulting cycle length is found
by taking the median of regional results. The cycle start estimation is utilizing Kalman
filter segmentation to extract mitral annulus excursion curves. This is similar to the
procedure in the mitral annulus excursion measurement project. The displacement
curve is then processed and provided as input to an algorithm which estimates the
cardiac cycle start using a displacement waveform shape lookup procedure.

We tested the algorithm using recordings from the HUNT database [63]. The
proposed algorithm had a feasibility for cycle length estimation of 98% when tested
with normal subjects and 91% for pathology cases. The median error, when compared
to ECG, was 0 and −3ms respectively. The cycle start estimation turned out to be
less robust and was feasible for 90% of the normal subjects and 77% of the pathology
cases. The median error for cycle start was 62 and 76ms respectively.

Cardiac cycle length and cycle start estimation without ECG is explored in the
paper ”Echocardiography without ECG”, which was a joint effort with postdoctoral
researcher Svein Arne Aase and published in European Journal of Echocardiography.

1.3.4 Contribution 4 - Real-time view detection and scanning
aid (Chapter 6 and Chapter 7)

An important prerequisite for evaluating cardiac function, is to have a decent imaging
view of the heart. We developed and tested two approaches for addressing this
challenge. One approach was a view identification algorithm aiming to recognize
an echocardiographic view as being one of the standard apical views. The other
solution was a scan assistant which aimed to help the user acquiring an apical four-
chamber view. Both methods were using the Kalman filter segmentation scheme to fit
parametric models of the preferred views to the image data. A quality-of-fit measure
was used to give the user feedback on the current view.

For view detection, multiple apical view models are fitted to the image data. By
analyzing the number of discarded edge detection measurements, a a score for how well
each model fits to the image data is calculated. If the image quality is low, or if the
model has a poor fit, the score will be low. If the current view is one of the standard
views, the score will have a peak for one of the view models. The algorithm was trained
using 31 randomly selected recordings, with approximately ten recordings from each
of the standard apical views (apical long-axis, apical two-chamber and apical four-
chamber). After training, another 37 random recordings were used for validation. The
view was correctly classified in 32 of the 37 cases (86.5%). This method can be used
to identify which of the standard views the user has acquired. This can be for instance
be used as a preprocessing step for automatic algorithms. The algorithm is presented
in the paper ”Automatic Real-time view detection” published in the Proceedings of
IEEE Ultrasonic Symposium 2009.

We also developed a scan assistant tool which aims to help the user to acquire
an apical four-chamber view. This is one of the most informative views during an
echocardiographic examination. Also, two other apical views (apical two-chamber and
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apical long-axis) can be obtained by doing rotations of the probe, starting out from the
four-chamber view. For the untrained user, assistance in getting the four-chamber view
correctly would be of great value. The scan assistant tool was implemented and tested
on a GE Vingmed E9 cardiac scanner (GE Vingmed Ultrasound, Horten, Norway). A
model of the apical four-chamber is fitted in real-time to the image data. A quality-
of-fit score is calculated and shown to the user together with an icon (”emoticon”)
indicating the view quality. The assistant was tested using ten medical students, who
examined two healthy volunteers during two sessions separated more than four days
in time. Half of the group used the scan assistant during their first session, while the
other half used it during the second session. All recordings were later randomized,
anonymized and rated by a cardiologist. The students managed to capture recordings
of acceptable quality in 85% of the cases when using the scan assistant, compared to
55% when not using the assistant. Use of the scan assistant improved the view quality
from poor to acceptable in 8 of 9 (89%) cases. The manuscript ”Real-time Scan
Assistant for Echocardiography” submitted to IEEE Transactions on Ultrasonics and
Ferroelectrics describes the algorithm and the results.

1.3.5 List of publications

Papers included in the Thesis

1. Sten Roar Snare; Ole Christian Mjølstad; Fredrik Orderud; Bjørn Olav
Haugen; Hans Torp ”Fast automatic measurement of mitral annulus excursion
using a pocket-sized ultrasound system”, Ultrasound in Medicine and Biology,
2011, In Press

2. Sten Roar Snare; Ole Christian Mjølstad; Fredrik Orderud; H̊avard Dalen;
Hans Torp, ”Automated Septum Thickness Measurement - a Kalman Filter
Approach”, accepted for publication in Computer Methods and Programs in
Biomedicine

3. Svein Arne Aase; Sten Roar Snare; H̊avard Dalen; Asbjørn Støylen; Fredrik
Orderud; Hans Torp, ”Echocardiography without electrocardiogram”, European
Journal of Echocardiography, vol. 12, no. 1,pp. 3-10, 2011.

4. Sten Roar Snare; Svein Arne Aase; Ole Christian Mjølstad; H̊avard Dalen;
Fredrik Orderud; Hans Torp, ”Automatic Real-time View Detection”, Proc.
IEEE Ultrason. Symp. 2009

5. Sten Roar Snare; Hans Torp; Fredrik Orderud; Bjørn Olav Haugen, ”Real-
time Scan Assistant for Echocardiography”, submitted to IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control

Related work not included in the Thesis

1. Svein Arne Aase; Sten Roar Snare, Ole Christian Mjølstad, H̊avard Dalen,
Fredrik Orderud, Hans Torp, ”QRS detection and cardiac cycle separation
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1.4 Evaluation and Discussion of Results

The work presented in this thesis illustrates applications of real-time Kalman filter
based segmentation intended for use with pocket-sized ultrasound. The segmentation
scheme is used in all of the projects, either alone as in the septal thickness
measurements and view quality projects, or combined with other approaches, as in
the mitral annulus excursion measurement and ultrasound without ECG projects.

Although the focus for this thesis has been computationally efficient algorithms
for use with PSU equipment, it was not an aim to implement the algorithms on a
PSU device. The presented algorithms have all had measured computation times
< 7.7ms/frame on a laptop computer. A PSU device operating at approximately
20 frames per second, has a time slot for calculations of 50ms. We believe that the
efficiency of the algorithms should facilitate implementation on PSU devices. In case
of the mitral annulus excursion project, we were able to test the algorithm on data
captured from a PSU device (the GE Vscan). The results suggest that the algorithm
functioned with the image quality and frame rate found on a commercial PSU device.

Our aim was to test the Kalman filter approach, as this was an approach which had
already proved to be highly efficient and whose flexibility laid ground for use in multiple
applications. The Kalman filter may not be the only solution which is sufficiently
efficient for a PSU implementation. For a future study, when the technical limitations
of the PSU devices are better mapped, a thorough benchmarking of methods should
be considered.

1.4.1 Mitral annulus excursion measurement

The parametric model used in the mitral annulus excursion estimation algorithm is
used to initialize and constrain a more regular speckle tracking procedure. The mean
error of −1.80 ± 1.96mm for the fully automatic and −1.57 ± 1.72mm for the semi-
automatic analysis using PSU data, indicates an underestimation compared to manual
anatomic m-mode measurements. This was also supported by the results when using
HCU/laptop scanner data. When only using the septal tracking point for analysis, the
automatic measurement was not biased. Similar results have previously been reported
in [62].

The Pearson’s correlation coefficients range between r = 0.61 and r = 0.69 and
are lower than some of the other numbers encountered in the literature, where regular
scanners have been used. One explanation for this could be that the excursion values
in our patient data had a narrow range of 6 to 14mm, while for instance Eto et al.
[38] had a range of 1.9 to 24.6mm. We believe that the correlation coefficient would
benefit from having a wider range in the data.
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Chapter 1. Introduction

When the algorithm was operated semi-automatically, only 50% of the PSU data
and 17% of the HCU data were processed without human interaction. In a few cases,
the model position was re-initialized, but most frequently the corrections were re-
initialization of the tracking points or disabling the lateral point. Judging from the
results, the main effect of the manual interaction was reduced maximum errors. On
average, the improvements were so small that it can hardly be justified to turn to the
semi-automatic approach on PSU devices.

The accuracy suggests it should be possible to fully automatically separate between
healthy and poorly contracting ventricles, which can be considered a main goal for
operation with PSU devices. The tendency of underestimation can cause some false
positives being unneccesarily referred to a more thorough cardiac exam. The standard
deviation of the error is relatively high. Converting the standard deviation of the error
to EF, using a factor of 5 [35] yields 9.8% for the PSU results. For comparison have
interobserver numbers for EF, using full-size scanners and Simpsons rule, been reported
to range from 4.2% (a study on echogenic patients) to 10.7% [64].

Our results indicate small differences between the results from the two scanners.
This was unexpected, as the lower frame rate on the PSU device should favor the
HCU scanner. One reason may be that the HCU recordings had some issues with
gain settings, causing intensity saturation in the basal region. The similar results
can also be explained by the image quality being limited by the acoustic window and
reverberations/aberrations, not the technical limitations of the equipment.

The computation time of 3.7ms/frame on a dual core 1.17GHz laptop computer
suggests that a real-time implementation is feasible. The advantage of real-time
operation would primarily be to display the mitral annulus excursion value during
the scan. In this way the user will get a feel for the variability and robustness of the
measurement.

A topic for future research could be to relieve the real-time constraint in order
to gain accuracy. Then other techniques, such as a Kalman smoother and two-
way speckle tracking [65] may be applied. Nevo et al. [37] used a low frame rate
dynamic programming approach, which outperformed the regular forward tracking
scheme. They reported a computation time of (mean ± SD) 162.1 ± 10.3 seconds.
Such solutions, utilizing the whole loop, can possibly improve the accuracy, but is
obviously not applicable for real-time operation.

As no ECG is available, the mitral annulus excursion value is calculated using
maximum and minimum excursion directly. In case of post-systolic shortening, that is
when the ventricle is contracting even more after end systole, the excursion value will
be over-estimated. This is not easily resolved without ECG. A topic for further work
could be to investigate a velocity curve, constructed from the displacement data, to
identify the true end systole by a near-zero velocity.

1.4.2 Septum thickness

The proposed solution provides information about septal hypertrophy. Hypertensive
hypertrophy is commonly seen as symmetric [66]. Hypertrophic cardiomyopathy,
on the other side, is often asymmetric [40]. The presented algorithm would detect
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1.4. Evaluation and Discussion of Results

asymmetric septal hypertrophy, but would not detect asymmetric hypertrophy in the
posterior wall.

The paired t-test revealed a non-significant mean error compared to the average
of the manual caliper measurements from two cardiologists of (mean ± SD) 0.14 ±
1.36mm. The 95% limits of agreement were −2.53mm to 2.81mm. When comparing
the B-mode caliper reference measurements from the two cardiologists, the t-test
yielded a statistically significant difference of 1.29±1.23mm. The correlation coefficient
between the algorithm and the cardiologists was 0.79(p < 0.001). Between the
cardiologists, the correlation was 0.84(p < 0.001). Based on these results, it seems as
if the algorithm is unbiased. The larger measurement errors of the algorithm exceed
the difference between normal and mildly hypertrophic septa, but the accuracy should
be adequate for separating normal and moderately hypertrophic septa, according to
the normal ranges in [46]. The standard deviation of the error is similar to that
of the measurement difference between the two clinicians. This indicates that the
algorithm accuracy is comparable to the inconsistency between trained cardiologists,
which should be sufficient to make it clinically acceptable for use with pocket-sized
ultrasound devices. The variability of the measurement error is high compared to the
range of the septal thickness measurement.

Manual septal thickness measurements are also reported to have large interobserver
variation. Using manual M-mode measurements, interobserver variability has been
reported to range from 9.1% [67] to 12% [63]. Converting the mean error between the
algorithm and manual M-mode measurements to percentage yields 11.3%, and is thus
in the same range as these numbers. Numbers for B-mode measurements were not
found in the literature. Here, the interobserver error for the two cardiologists using
B-mode was found to be 15%, which is somewhat higher than the M-mode numbers
from the literature. The variability in the B-mode references seems to originate from
a few recordings where the two cardiologists interpret differently the borders on the
right ventricle side of the septum. Correct measurement of septal thickness using B-
mode images is challenging both for the algorithm and humans. Especially the right
ventricle structures can make it hard to identify the true septal border, which probably
is also why the recommendations [46] suggest to also use (targeted) M-mode for this
measurement.

Due to local thickness variations, the measurement can be dependent on the
measurement level, which in turn is based on identification of the mitral valve tip.
The mitral valve and its tip is often poorly visible. The septum models may also fail
to accurately follow local variations in the septum shape, especially in the stiffer parts
of the models.

The computation time of 7.7ms per frame on a dual core 1.17GHz laptop computer,
suggests that a real-time implementation could be feasible on PSU scanners.

The algorithm performed automatic in 78.4% of the test cases, and is thus within
range of becoming fully automatic. The depth initialization procedure sometimes
failed to correctly identify the septum. Improving the depth initializer is a topic for
further research. Unfortunately, the data analysis was not split. It would have been
interesting to analyze the fully automatic results separately.

Using a semi-automatic algorithn, Moladoust et al. [47] reported measurement
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yielded a statistically significant difference of 1.29±1.23mm. The correlation coefficient
between the algorithm and the cardiologists was 0.79(p < 0.001). Between the
cardiologists, the correlation was 0.84(p < 0.001). Based on these results, it seems as
if the algorithm is unbiased. The larger measurement errors of the algorithm exceed
the difference between normal and mildly hypertrophic septa, but the accuracy should
be adequate for separating normal and moderately hypertrophic septa, according to
the normal ranges in [46]. The standard deviation of the error is similar to that
of the measurement difference between the two clinicians. This indicates that the
algorithm accuracy is comparable to the inconsistency between trained cardiologists,
which should be sufficient to make it clinically acceptable for use with pocket-sized
ultrasound devices. The variability of the measurement error is high compared to the
range of the septal thickness measurement.

Manual septal thickness measurements are also reported to have large interobserver
variation. Using manual M-mode measurements, interobserver variability has been
reported to range from 9.1% [67] to 12% [63]. Converting the mean error between the
algorithm and manual M-mode measurements to percentage yields 11.3%, and is thus
in the same range as these numbers. Numbers for B-mode measurements were not
found in the literature. Here, the interobserver error for the two cardiologists using
B-mode was found to be 15%, which is somewhat higher than the M-mode numbers
from the literature. The variability in the B-mode references seems to originate from
a few recordings where the two cardiologists interpret differently the borders on the
right ventricle side of the septum. Correct measurement of septal thickness using B-
mode images is challenging both for the algorithm and humans. Especially the right
ventricle structures can make it hard to identify the true septal border, which probably
is also why the recommendations [46] suggest to also use (targeted) M-mode for this
measurement.

Due to local thickness variations, the measurement can be dependent on the
measurement level, which in turn is based on identification of the mitral valve tip.
The mitral valve and its tip is often poorly visible. The septum models may also fail
to accurately follow local variations in the septum shape, especially in the stiffer parts
of the models.

The computation time of 7.7ms per frame on a dual core 1.17GHz laptop computer,
suggests that a real-time implementation could be feasible on PSU scanners.

The algorithm performed automatic in 78.4% of the test cases, and is thus within
range of becoming fully automatic. The depth initialization procedure sometimes
failed to correctly identify the septum. Improving the depth initializer is a topic for
further research. Unfortunately, the data analysis was not split. It would have been
interesting to analyze the fully automatic results separately.

Using a semi-automatic algorithn, Moladoust et al. [47] reported measurement
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errors for septum thickness in apical images to have standard deviations of 0.87 and
0.89mm in base and mid septal regions respectively. The reference method and clinical
foundation for this work is a bit unclear. Subramanian et al. [48] proposed to use an
active shape algorithm with local region based segmentation energy. They also applied
a motion clustering scheme to detect the mitral valve. The computation time was
reported to be 100ms per frame on a 2.6GHz computer with 2GB RAM. They analyzed
57 recordings and reported an accuracy of (mean ± SD) 0.88 ± 0.96mm and 1.17 ±
0.92mm versus two different cardiologists respectively. This is a significantly better
accuracy than our proposed method, although it should be noted that Subramanian
et al. did not make any statements whether they used a separate training set, nor how
the recordings were selected. Their proposed mitral valve detector is also incompatible
with real-time operation.

The septum thickness measurement does not really need to be real-time. By
utilizing the data stored in the image buffer, the measurement can be performed as
a post-processing step. For the Kalman filter, turning to an offline solution, would
make it feasible to use other estimation schemes, such as a Kalman smoother [68] or
an unscented Kalman filter [69]. This is a topic for further research. As of now, aiming
for real-time operation, only information up to the current time step is utilized.

1.4.3 Echocardiography without ECG

The results from the validation study, indicate that cardiac cycle length estimation
without ECG is feasible. The estimate has a very small median error, and the 85%
percentile of -15ms to 15ms on healthy subjects and -17ms to 14ms on subjects with
pathology is considered tolerable. Cycle start estimation was less robust with a
feasability of 77% for subjects with pathology. The median error of 62ms for healthy
and 76ms for pathologic cases indicates that the method is slightly biased. The 85%
percentile is wider (-4ms to 160ms). The better robustness of the the cycle length
estimate is partly explained by the assumption that it is easier to detect the repetition
of any event than to detect a predefined, single event in a cardiac cycle. The cardiac
cycle start algorithm also involves speckle tracking to measure the longitudinal motion
of the mitral annulus. This introduces more sources of errors than a purely intensity
based approach.

The current algorithm has an inherent heart rate range limitation. It relies on a
sum of absolute differences (SAD) fit of a template to detect the cardiac cycle length.
If the length of the data buffer is long compared to the template length, there is a risk
that there are multiple local optima for the SAD function. We have presumed that
the SAD function has one single global minimum. This imposes restrictions on the
heart rates, depending on the template length. Using our current setup, the supported
range is from 45 to 90 beats per minute. This suffices for most cardiac examinations
in resting subjects. However, for trauma patients, the heart rates can be outside the
supported range. By using a training set with a wider span in the cycle lengths, the
algorithm could possibly be tuned to support other heart rates. To completely relieve
the heart rate range limitation, the algorithm must be redesigned to handle multiple
minima in the SAD function. It is worth noting that the failure mode when the
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algorithm is applied to higher framerates than supported, is to store multiple cycles.
In some applications this may not constitute a problem.

The model-based cycle start estimation is limited by the assumption of an apical
view of the heart. Future work could involve an extension of the algorithm to also
handle parasternal views. Note that this limitation is not imposed on the cycle length
algorithm.

1.4.4 View detection and Scan assistant

The view detection algorithm successfully identified the standard views in 86.7% of
the 37 test cases. The apical long-axis was the most frequently misidentified view,
where two of elleven cases were misclassified as being apical two-chamber views. This
is probably caused by poor visibility of the aortic outlet tract, which is the most
reliable landmark to separate a two-chamber view from an apical long-axis view. In
two other cases, apical four-chamber views were identified as two-chamber views. This
was caused by poor visibility of the right ventricle in combination with foreshortened
atria. We did not establish whether non-standard views were successfully rejected by
the system. For instance, there is a risk that a corrupt four-chamber view missing
large parts of either the left or right side, can be misinterpreted as a two-chamber
view. Extending the validation and, if required, the algorithm to robustly filter out
non-standard views is a topic for further research.

The scan assistant was targeted towards acquisition of the apical four-chamber
view only. We presented promising results when the assistant was used by non-expert
users. When using the scan assistant and showing the template model on screen, 85%
of the recordings were of acceptable (good or fair) quality. Without showing the model,
80% were of acceptable quality, and with no scan assistant only 55% of the recordings
were acceptable. It is also important to note that use of the scan assistant improved
the quality from poor to acceptable in 89% of the cases when showing the model.
It should be noted that in two cases (10%) when the scan assistant was used with
model display, the image quality degraded from acceptable to poor when using the
assistant. In one case the image quality remained poor. All of these cases happened
when the scan assistant was used to examine subject 2 during the first session. It may
be that display of the view template model on the screen confused the students, who
were unfamiliar with the situation and struggled hard to find an acoustic window on
subject 2. Also, one of the cases of degradation included a recording where the student
stored the image while the scan assistant was reporting poor quality.

The main challenge for the scan assistant algorithm turned out to be failing
detection of oblique views. Particularly challenging were the cases where the atria
were visible but deformed. This is related to the distinction between view quality
and image quality. The number of successful edge detections are used to generate the
quality scores. An edge detection either fails because the edge is too weak to be reliable
(image quality), or because there is no edge close to the cavity model (orientation/view
quality). Poorly fitting atrial models, having a percentage of successful edge detections
lower than a certain threshold, are used to detect oblique cuts. In order to approve a
good view having medium to poor image quality, the threshold for atrium detection
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must be lowered. In recordings having good image quality, with good contrast and
intensity, few edges are discarded due to image quality. As a result, the number
of spurious edges and edges from deformed atria may in some cases cause faulty
identification of the atria, leading to failed detection of foreshortening/oblique cuts.

Further studies should focus on improved detection of foreshortening. This could
either be achieved by taking the atrial shapes into account when calculating the score
values, or by using an adaptive discard threshold for cavity detection, yielding a better
separation between view and image quality. Currently, the focus has been on apical
views. We did not test the scan assistant with parasternal views. This also seems less
relevant, as the apical and parasternal views are taken from two different scanning
windows. It should not be possible to confuse parasternal and apical views. For further
studies, it would be interesting to also investigate the application of a parasternal view
model in the scan assistant framework. It is essential to keep the real-time operation,
as our results suggest that non-expert users of ultrasound benefit from getting feedback
on the view quality during image acquisition.

1.5 Conclusion

In this work we have developed and tested user assistance and quantification algorithms
for echocardiography using pocket-sized ultrasound devices. We presented automated
algorithms for rapid assessment of mitral annulus excursion values and septal thickness
measurements. We also presented an algorithm intended to replace some of the
functionality of the electrocardiogram on high end scanners. Finally, we developed
an algorithm to aid untrained users acquiring and recognizing standardized images of
the heart. The possibility of applying the algorithms in real-time reduces the need for
post-processing and can speed up the examination.

The algorithms have all been utilizing an extended Kalman filter in conjunction
with non-uniform rational B-splines. The Kalman filter approach has demonstrated
computational efficiency, versatility and noise robustness. The convergence radius of
the models has been adequate. For the mitral annulus excursion measurement project
our results are comparable to previously published results, but more accurate offline
high frame rate algorithms have been published. In the septal thickness case, we
achieved an accuracy comparable to the inconsistency between two cardiologists. We
have been successfully estimating the cycle length without ECG leads, and in most
cases even the cycle start/end diastole time point. The proposed scan assistant was
shown to be a promising aid for inexperienced users.

Overall, the Kalman filter approach is likely to be well suited for applications
with miniaturized scanners. As the use of pocket-sized ultrasound devices become
more widespread, we hope that the presented work can be a contribution to making
echocardiography accessible for non-expert users.

17

Chapter 1. Introduction

must be lowered. In recordings having good image quality, with good contrast and
intensity, few edges are discarded due to image quality. As a result, the number
of spurious edges and edges from deformed atria may in some cases cause faulty
identification of the atria, leading to failed detection of foreshortening/oblique cuts.

Further studies should focus on improved detection of foreshortening. This could
either be achieved by taking the atrial shapes into account when calculating the score
values, or by using an adaptive discard threshold for cavity detection, yielding a better
separation between view and image quality. Currently, the focus has been on apical
views. We did not test the scan assistant with parasternal views. This also seems less
relevant, as the apical and parasternal views are taken from two different scanning
windows. It should not be possible to confuse parasternal and apical views. For further
studies, it would be interesting to also investigate the application of a parasternal view
model in the scan assistant framework. It is essential to keep the real-time operation,
as our results suggest that non-expert users of ultrasound benefit from getting feedback
on the view quality during image acquisition.

1.5 Conclusion

In this work we have developed and tested user assistance and quantification algorithms
for echocardiography using pocket-sized ultrasound devices. We presented automated
algorithms for rapid assessment of mitral annulus excursion values and septal thickness
measurements. We also presented an algorithm intended to replace some of the
functionality of the electrocardiogram on high end scanners. Finally, we developed
an algorithm to aid untrained users acquiring and recognizing standardized images of
the heart. The possibility of applying the algorithms in real-time reduces the need for
post-processing and can speed up the examination.

The algorithms have all been utilizing an extended Kalman filter in conjunction
with non-uniform rational B-splines. The Kalman filter approach has demonstrated
computational efficiency, versatility and noise robustness. The convergence radius of
the models has been adequate. For the mitral annulus excursion measurement project
our results are comparable to previously published results, but more accurate offline
high frame rate algorithms have been published. In the septal thickness case, we
achieved an accuracy comparable to the inconsistency between two cardiologists. We
have been successfully estimating the cycle length without ECG leads, and in most
cases even the cycle start/end diastole time point. The proposed scan assistant was
shown to be a promising aid for inexperienced users.

Overall, the Kalman filter approach is likely to be well suited for applications
with miniaturized scanners. As the use of pocket-sized ultrasound devices become
more widespread, we hope that the presented work can be a contribution to making
echocardiography accessible for non-expert users.

17

Chapter 1. Introduction

must be lowered. In recordings having good image quality, with good contrast and
intensity, few edges are discarded due to image quality. As a result, the number
of spurious edges and edges from deformed atria may in some cases cause faulty
identification of the atria, leading to failed detection of foreshortening/oblique cuts.

Further studies should focus on improved detection of foreshortening. This could
either be achieved by taking the atrial shapes into account when calculating the score
values, or by using an adaptive discard threshold for cavity detection, yielding a better
separation between view and image quality. Currently, the focus has been on apical
views. We did not test the scan assistant with parasternal views. This also seems less
relevant, as the apical and parasternal views are taken from two different scanning
windows. It should not be possible to confuse parasternal and apical views. For further
studies, it would be interesting to also investigate the application of a parasternal view
model in the scan assistant framework. It is essential to keep the real-time operation,
as our results suggest that non-expert users of ultrasound benefit from getting feedback
on the view quality during image acquisition.

1.5 Conclusion

In this work we have developed and tested user assistance and quantification algorithms
for echocardiography using pocket-sized ultrasound devices. We presented automated
algorithms for rapid assessment of mitral annulus excursion values and septal thickness
measurements. We also presented an algorithm intended to replace some of the
functionality of the electrocardiogram on high end scanners. Finally, we developed
an algorithm to aid untrained users acquiring and recognizing standardized images of
the heart. The possibility of applying the algorithms in real-time reduces the need for
post-processing and can speed up the examination.

The algorithms have all been utilizing an extended Kalman filter in conjunction
with non-uniform rational B-splines. The Kalman filter approach has demonstrated
computational efficiency, versatility and noise robustness. The convergence radius of
the models has been adequate. For the mitral annulus excursion measurement project
our results are comparable to previously published results, but more accurate offline
high frame rate algorithms have been published. In the septal thickness case, we
achieved an accuracy comparable to the inconsistency between two cardiologists. We
have been successfully estimating the cycle length without ECG leads, and in most
cases even the cycle start/end diastole time point. The proposed scan assistant was
shown to be a promising aid for inexperienced users.

Overall, the Kalman filter approach is likely to be well suited for applications
with miniaturized scanners. As the use of pocket-sized ultrasound devices become
more widespread, we hope that the presented work can be a contribution to making
echocardiography accessible for non-expert users.

17

Chapter 1. Introduction

must be lowered. In recordings having good image quality, with good contrast and
intensity, few edges are discarded due to image quality. As a result, the number
of spurious edges and edges from deformed atria may in some cases cause faulty
identification of the atria, leading to failed detection of foreshortening/oblique cuts.

Further studies should focus on improved detection of foreshortening. This could
either be achieved by taking the atrial shapes into account when calculating the score
values, or by using an adaptive discard threshold for cavity detection, yielding a better
separation between view and image quality. Currently, the focus has been on apical
views. We did not test the scan assistant with parasternal views. This also seems less
relevant, as the apical and parasternal views are taken from two different scanning
windows. It should not be possible to confuse parasternal and apical views. For further
studies, it would be interesting to also investigate the application of a parasternal view
model in the scan assistant framework. It is essential to keep the real-time operation,
as our results suggest that non-expert users of ultrasound benefit from getting feedback
on the view quality during image acquisition.

1.5 Conclusion

In this work we have developed and tested user assistance and quantification algorithms
for echocardiography using pocket-sized ultrasound devices. We presented automated
algorithms for rapid assessment of mitral annulus excursion values and septal thickness
measurements. We also presented an algorithm intended to replace some of the
functionality of the electrocardiogram on high end scanners. Finally, we developed
an algorithm to aid untrained users acquiring and recognizing standardized images of
the heart. The possibility of applying the algorithms in real-time reduces the need for
post-processing and can speed up the examination.

The algorithms have all been utilizing an extended Kalman filter in conjunction
with non-uniform rational B-splines. The Kalman filter approach has demonstrated
computational efficiency, versatility and noise robustness. The convergence radius of
the models has been adequate. For the mitral annulus excursion measurement project
our results are comparable to previously published results, but more accurate offline
high frame rate algorithms have been published. In the septal thickness case, we
achieved an accuracy comparable to the inconsistency between two cardiologists. We
have been successfully estimating the cycle length without ECG leads, and in most
cases even the cycle start/end diastole time point. The proposed scan assistant was
shown to be a promising aid for inexperienced users.

Overall, the Kalman filter approach is likely to be well suited for applications
with miniaturized scanners. As the use of pocket-sized ultrasound devices become
more widespread, we hope that the presented work can be a contribution to making
echocardiography accessible for non-expert users.

17



1.5. Conclusion

18

1.5. Conclusion

18

1.5. Conclusion

18

1.5. Conclusion

18



References

[1] C. Ligtvoet, H. Rusterborgh, L. Kappen, and N. Bom, “Real time ultrasonic
imaging with a hand-held scanner Part I–Technical description,” Ultrasound in
Medicine & Biology, vol. 4, pp. 91–92, 1978.

[2] E. C. Vourvouri and J. R. T. C. Roelandt, “Ultrasound Stethoscopy,” in
Echocardiography (P. Nihoyannopoulos and J. Kisslo, eds.), ch. 32, pp. 619–636,
London: Springer London, 2009.

[3] J. Seward, “Hand-carried cardiac ultrasound (HCU) device: Recommendations
regarding new technology. A report from the Echocardiography Task Force
on New Technology of the Nomenclature and Standards Committee of the
American Society of Echocardiography,” Journal of the American Society of
Echocardiography, vol. 15, pp. 369–373, Apr. 2002.

[4] Klein Biomedical Consultants, “The U.S. Market for Portable Ultrasound
Systems: Challenges & Opportunities 2008 Report,” 2009.

[5] C. Prinz and J.-U. Voigt, “Diagnostic Accuracy of a Hand-Held Ultrasound
Scanner in Routine Patients Referred for Echocardiography.,” Journal of the
American Society of Echocardiography : official publication of the American
Society of Echocardiography, pp. 0–5, Dec. 2010. Epub ahead of print 2011 Jan
10.

[6] N. Cardim, C. Fernandez Golfin, D. Ferreira, A. Aubele, J. Toste, M. A. Cobos,
V. Carmelo, I. Nunes, A. Gouveia Oliveira, and J. Zamorano, “Usefulness
of a New Miniaturized Echocardiographic System in Outpatient Cardiology
Consultations as an Extension of Physical Examination.,” Journal of the
American Society of Echocardiography : official publication of the American
Society of Echocardiography, pp. 1–8, Nov. 2010. Epub ahead of print 2011 Jan
10.

[7] G. Perez-Avraham, S. L. Kobal, O. Etzion, V. Novack, T. Wolak, N. Liel-Cohen,
and E. Paran, “Left ventricular geometric abnormality screening in hypertensive
patients using a hand-carried ultrasound device.,” Journal of clinical hypertension
(Greenwich, Conn.), vol. 12, pp. 181–6, Mar. 2010.

19

References

[1] C. Ligtvoet, H. Rusterborgh, L. Kappen, and N. Bom, “Real time ultrasonic
imaging with a hand-held scanner Part I–Technical description,” Ultrasound in
Medicine & Biology, vol. 4, pp. 91–92, 1978.

[2] E. C. Vourvouri and J. R. T. C. Roelandt, “Ultrasound Stethoscopy,” in
Echocardiography (P. Nihoyannopoulos and J. Kisslo, eds.), ch. 32, pp. 619–636,
London: Springer London, 2009.

[3] J. Seward, “Hand-carried cardiac ultrasound (HCU) device: Recommendations
regarding new technology. A report from the Echocardiography Task Force
on New Technology of the Nomenclature and Standards Committee of the
American Society of Echocardiography,” Journal of the American Society of
Echocardiography, vol. 15, pp. 369–373, Apr. 2002.

[4] Klein Biomedical Consultants, “The U.S. Market for Portable Ultrasound
Systems: Challenges & Opportunities 2008 Report,” 2009.

[5] C. Prinz and J.-U. Voigt, “Diagnostic Accuracy of a Hand-Held Ultrasound
Scanner in Routine Patients Referred for Echocardiography.,” Journal of the
American Society of Echocardiography : official publication of the American
Society of Echocardiography, pp. 0–5, Dec. 2010. Epub ahead of print 2011 Jan
10.

[6] N. Cardim, C. Fernandez Golfin, D. Ferreira, A. Aubele, J. Toste, M. A. Cobos,
V. Carmelo, I. Nunes, A. Gouveia Oliveira, and J. Zamorano, “Usefulness
of a New Miniaturized Echocardiographic System in Outpatient Cardiology
Consultations as an Extension of Physical Examination.,” Journal of the
American Society of Echocardiography : official publication of the American
Society of Echocardiography, pp. 1–8, Nov. 2010. Epub ahead of print 2011 Jan
10.

[7] G. Perez-Avraham, S. L. Kobal, O. Etzion, V. Novack, T. Wolak, N. Liel-Cohen,
and E. Paran, “Left ventricular geometric abnormality screening in hypertensive
patients using a hand-carried ultrasound device.,” Journal of clinical hypertension
(Greenwich, Conn.), vol. 12, pp. 181–6, Mar. 2010.

19

References

[1] C. Ligtvoet, H. Rusterborgh, L. Kappen, and N. Bom, “Real time ultrasonic
imaging with a hand-held scanner Part I–Technical description,” Ultrasound in
Medicine & Biology, vol. 4, pp. 91–92, 1978.

[2] E. C. Vourvouri and J. R. T. C. Roelandt, “Ultrasound Stethoscopy,” in
Echocardiography (P. Nihoyannopoulos and J. Kisslo, eds.), ch. 32, pp. 619–636,
London: Springer London, 2009.

[3] J. Seward, “Hand-carried cardiac ultrasound (HCU) device: Recommendations
regarding new technology. A report from the Echocardiography Task Force
on New Technology of the Nomenclature and Standards Committee of the
American Society of Echocardiography,” Journal of the American Society of
Echocardiography, vol. 15, pp. 369–373, Apr. 2002.

[4] Klein Biomedical Consultants, “The U.S. Market for Portable Ultrasound
Systems: Challenges & Opportunities 2008 Report,” 2009.

[5] C. Prinz and J.-U. Voigt, “Diagnostic Accuracy of a Hand-Held Ultrasound
Scanner in Routine Patients Referred for Echocardiography.,” Journal of the
American Society of Echocardiography : official publication of the American
Society of Echocardiography, pp. 0–5, Dec. 2010. Epub ahead of print 2011 Jan
10.

[6] N. Cardim, C. Fernandez Golfin, D. Ferreira, A. Aubele, J. Toste, M. A. Cobos,
V. Carmelo, I. Nunes, A. Gouveia Oliveira, and J. Zamorano, “Usefulness
of a New Miniaturized Echocardiographic System in Outpatient Cardiology
Consultations as an Extension of Physical Examination.,” Journal of the
American Society of Echocardiography : official publication of the American
Society of Echocardiography, pp. 1–8, Nov. 2010. Epub ahead of print 2011 Jan
10.

[7] G. Perez-Avraham, S. L. Kobal, O. Etzion, V. Novack, T. Wolak, N. Liel-Cohen,
and E. Paran, “Left ventricular geometric abnormality screening in hypertensive
patients using a hand-carried ultrasound device.,” Journal of clinical hypertension
(Greenwich, Conn.), vol. 12, pp. 181–6, Mar. 2010.

19

References

[1] C. Ligtvoet, H. Rusterborgh, L. Kappen, and N. Bom, “Real time ultrasonic
imaging with a hand-held scanner Part I–Technical description,” Ultrasound in
Medicine & Biology, vol. 4, pp. 91–92, 1978.

[2] E. C. Vourvouri and J. R. T. C. Roelandt, “Ultrasound Stethoscopy,” in
Echocardiography (P. Nihoyannopoulos and J. Kisslo, eds.), ch. 32, pp. 619–636,
London: Springer London, 2009.

[3] J. Seward, “Hand-carried cardiac ultrasound (HCU) device: Recommendations
regarding new technology. A report from the Echocardiography Task Force
on New Technology of the Nomenclature and Standards Committee of the
American Society of Echocardiography,” Journal of the American Society of
Echocardiography, vol. 15, pp. 369–373, Apr. 2002.

[4] Klein Biomedical Consultants, “The U.S. Market for Portable Ultrasound
Systems: Challenges & Opportunities 2008 Report,” 2009.

[5] C. Prinz and J.-U. Voigt, “Diagnostic Accuracy of a Hand-Held Ultrasound
Scanner in Routine Patients Referred for Echocardiography.,” Journal of the
American Society of Echocardiography : official publication of the American
Society of Echocardiography, pp. 0–5, Dec. 2010. Epub ahead of print 2011 Jan
10.

[6] N. Cardim, C. Fernandez Golfin, D. Ferreira, A. Aubele, J. Toste, M. A. Cobos,
V. Carmelo, I. Nunes, A. Gouveia Oliveira, and J. Zamorano, “Usefulness
of a New Miniaturized Echocardiographic System in Outpatient Cardiology
Consultations as an Extension of Physical Examination.,” Journal of the
American Society of Echocardiography : official publication of the American
Society of Echocardiography, pp. 1–8, Nov. 2010. Epub ahead of print 2011 Jan
10.

[7] G. Perez-Avraham, S. L. Kobal, O. Etzion, V. Novack, T. Wolak, N. Liel-Cohen,
and E. Paran, “Left ventricular geometric abnormality screening in hypertensive
patients using a hand-carried ultrasound device.,” Journal of clinical hypertension
(Greenwich, Conn.), vol. 12, pp. 181–6, Mar. 2010.

19



References

[8] E. Vourvouri, “Left ventricular hypertrophy screening using a hand-held
ultrasound device,” European Heart Journal, vol. 23, pp. 1516–1521, Oct. 2002.

[9] S. Giusca, R. Jurcut, R. Ticulescu, D. Dumitru, A. Vladaia, O. Savu, A. Voican,
B. a. Popescu, and C. Ginghina, “Accuracy of Handheld Echocardiography for
Bedside Diagnostic Evaluation in a Tertiary Cardiology Center: Comparison with
Standard Echocardiography.,” Echocardiography (Mount Kisco, N.Y.), Nov. 2010.

[10] B. C. Culp, J. D. Mock, C. D. Chiles, and W. C. Culp, “The Pocket
Echocardiograph: Validation and Feasibility.,” Echocardiography (Mount Kisco,
N.Y.), pp. 1–6, Apr. 2010.

[11] E. C. Vourvouri, A. F. L. Schinkel, J. R. T. C. Roelandt, F. Boomsma, G. Sianos,
M. Bountioukos, F. B. Sozzi, V. Rizzello, J. J. Bax, H. I. Karvounis, and
D. Poldermans, “Screening for left ventricular dysfunction using a hand-carried
cardiac ultrasound device.,” European journal of heart failure : journal of the
Working Group on Heart Failure of the European Society of Cardiology, vol. 5,
pp. 767–74, Dec. 2003.

[12] B. J. Kimura, G. W. Gilcrease, B. K. Showalter, J. N. Phan, and T. Wolfson,
“Diagnostic performance of a pocket-sized ultrasound device for quick-look
cardiac imaging.,” The American journal of emergency medicine, vol. 1, pp. 1–5,
Oct. 2010.

[13] L. Croft, W. Duvall, and M. Goldman, “A pilot study of the clinical impact of
hand-carried cardiac ultrasound in the medical clinic,” Echocardiography, vol. 23,
no. 6, pp. 439–446, 2006.

[14] M. Egan and a. Ionescu, “The pocket echocardiograph: a useful new tool?,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 9, pp. 721–5, Nov.
2008.

[15] S. Fukuda, K. Shimada, T. Kawasaki, H. Fujimoto, K. Maeda, H. Inanami,
K. Yoshida, S. Jissho, H. Taguchi, M. Yoshiyama, and J. Yoshikawa, “Pocket-
sized transthoracic echocardiography device for the measurement of cardiac
chamber size and function.,” Circulation journal : official journal of the Japanese
Circulation Society, vol. 73, pp. 1092–6, June 2009.

[16] K. Spencer and R. Lang, “Point of service echocardiography,” ACC Cardiosource
Review Journal, vol. 1458, no. 02, pp. 49–51, 2002.

[17] K. Spencer, “Hand-carried cardiac ultrasound,” Current Cardiovascular Imaging
Reports, vol. 17, pp. 399–403, May 2008.

[18] J. Wise, “Everyone’s a radiologist now,” British Medical Journal, vol. 336,
pp. 1041–1043, May 2008.

20

References

[8] E. Vourvouri, “Left ventricular hypertrophy screening using a hand-held
ultrasound device,” European Heart Journal, vol. 23, pp. 1516–1521, Oct. 2002.

[9] S. Giusca, R. Jurcut, R. Ticulescu, D. Dumitru, A. Vladaia, O. Savu, A. Voican,
B. a. Popescu, and C. Ginghina, “Accuracy of Handheld Echocardiography for
Bedside Diagnostic Evaluation in a Tertiary Cardiology Center: Comparison with
Standard Echocardiography.,” Echocardiography (Mount Kisco, N.Y.), Nov. 2010.

[10] B. C. Culp, J. D. Mock, C. D. Chiles, and W. C. Culp, “The Pocket
Echocardiograph: Validation and Feasibility.,” Echocardiography (Mount Kisco,
N.Y.), pp. 1–6, Apr. 2010.

[11] E. C. Vourvouri, A. F. L. Schinkel, J. R. T. C. Roelandt, F. Boomsma, G. Sianos,
M. Bountioukos, F. B. Sozzi, V. Rizzello, J. J. Bax, H. I. Karvounis, and
D. Poldermans, “Screening for left ventricular dysfunction using a hand-carried
cardiac ultrasound device.,” European journal of heart failure : journal of the
Working Group on Heart Failure of the European Society of Cardiology, vol. 5,
pp. 767–74, Dec. 2003.

[12] B. J. Kimura, G. W. Gilcrease, B. K. Showalter, J. N. Phan, and T. Wolfson,
“Diagnostic performance of a pocket-sized ultrasound device for quick-look
cardiac imaging.,” The American journal of emergency medicine, vol. 1, pp. 1–5,
Oct. 2010.

[13] L. Croft, W. Duvall, and M. Goldman, “A pilot study of the clinical impact of
hand-carried cardiac ultrasound in the medical clinic,” Echocardiography, vol. 23,
no. 6, pp. 439–446, 2006.

[14] M. Egan and a. Ionescu, “The pocket echocardiograph: a useful new tool?,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 9, pp. 721–5, Nov.
2008.

[15] S. Fukuda, K. Shimada, T. Kawasaki, H. Fujimoto, K. Maeda, H. Inanami,
K. Yoshida, S. Jissho, H. Taguchi, M. Yoshiyama, and J. Yoshikawa, “Pocket-
sized transthoracic echocardiography device for the measurement of cardiac
chamber size and function.,” Circulation journal : official journal of the Japanese
Circulation Society, vol. 73, pp. 1092–6, June 2009.

[16] K. Spencer and R. Lang, “Point of service echocardiography,” ACC Cardiosource
Review Journal, vol. 1458, no. 02, pp. 49–51, 2002.

[17] K. Spencer, “Hand-carried cardiac ultrasound,” Current Cardiovascular Imaging
Reports, vol. 17, pp. 399–403, May 2008.

[18] J. Wise, “Everyone’s a radiologist now,” British Medical Journal, vol. 336,
pp. 1041–1043, May 2008.

20

References

[8] E. Vourvouri, “Left ventricular hypertrophy screening using a hand-held
ultrasound device,” European Heart Journal, vol. 23, pp. 1516–1521, Oct. 2002.

[9] S. Giusca, R. Jurcut, R. Ticulescu, D. Dumitru, A. Vladaia, O. Savu, A. Voican,
B. a. Popescu, and C. Ginghina, “Accuracy of Handheld Echocardiography for
Bedside Diagnostic Evaluation in a Tertiary Cardiology Center: Comparison with
Standard Echocardiography.,” Echocardiography (Mount Kisco, N.Y.), Nov. 2010.

[10] B. C. Culp, J. D. Mock, C. D. Chiles, and W. C. Culp, “The Pocket
Echocardiograph: Validation and Feasibility.,” Echocardiography (Mount Kisco,
N.Y.), pp. 1–6, Apr. 2010.

[11] E. C. Vourvouri, A. F. L. Schinkel, J. R. T. C. Roelandt, F. Boomsma, G. Sianos,
M. Bountioukos, F. B. Sozzi, V. Rizzello, J. J. Bax, H. I. Karvounis, and
D. Poldermans, “Screening for left ventricular dysfunction using a hand-carried
cardiac ultrasound device.,” European journal of heart failure : journal of the
Working Group on Heart Failure of the European Society of Cardiology, vol. 5,
pp. 767–74, Dec. 2003.

[12] B. J. Kimura, G. W. Gilcrease, B. K. Showalter, J. N. Phan, and T. Wolfson,
“Diagnostic performance of a pocket-sized ultrasound device for quick-look
cardiac imaging.,” The American journal of emergency medicine, vol. 1, pp. 1–5,
Oct. 2010.

[13] L. Croft, W. Duvall, and M. Goldman, “A pilot study of the clinical impact of
hand-carried cardiac ultrasound in the medical clinic,” Echocardiography, vol. 23,
no. 6, pp. 439–446, 2006.

[14] M. Egan and a. Ionescu, “The pocket echocardiograph: a useful new tool?,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 9, pp. 721–5, Nov.
2008.

[15] S. Fukuda, K. Shimada, T. Kawasaki, H. Fujimoto, K. Maeda, H. Inanami,
K. Yoshida, S. Jissho, H. Taguchi, M. Yoshiyama, and J. Yoshikawa, “Pocket-
sized transthoracic echocardiography device for the measurement of cardiac
chamber size and function.,” Circulation journal : official journal of the Japanese
Circulation Society, vol. 73, pp. 1092–6, June 2009.

[16] K. Spencer and R. Lang, “Point of service echocardiography,” ACC Cardiosource
Review Journal, vol. 1458, no. 02, pp. 49–51, 2002.

[17] K. Spencer, “Hand-carried cardiac ultrasound,” Current Cardiovascular Imaging
Reports, vol. 17, pp. 399–403, May 2008.

[18] J. Wise, “Everyone’s a radiologist now,” British Medical Journal, vol. 336,
pp. 1041–1043, May 2008.

20

References

[8] E. Vourvouri, “Left ventricular hypertrophy screening using a hand-held
ultrasound device,” European Heart Journal, vol. 23, pp. 1516–1521, Oct. 2002.

[9] S. Giusca, R. Jurcut, R. Ticulescu, D. Dumitru, A. Vladaia, O. Savu, A. Voican,
B. a. Popescu, and C. Ginghina, “Accuracy of Handheld Echocardiography for
Bedside Diagnostic Evaluation in a Tertiary Cardiology Center: Comparison with
Standard Echocardiography.,” Echocardiography (Mount Kisco, N.Y.), Nov. 2010.

[10] B. C. Culp, J. D. Mock, C. D. Chiles, and W. C. Culp, “The Pocket
Echocardiograph: Validation and Feasibility.,” Echocardiography (Mount Kisco,
N.Y.), pp. 1–6, Apr. 2010.

[11] E. C. Vourvouri, A. F. L. Schinkel, J. R. T. C. Roelandt, F. Boomsma, G. Sianos,
M. Bountioukos, F. B. Sozzi, V. Rizzello, J. J. Bax, H. I. Karvounis, and
D. Poldermans, “Screening for left ventricular dysfunction using a hand-carried
cardiac ultrasound device.,” European journal of heart failure : journal of the
Working Group on Heart Failure of the European Society of Cardiology, vol. 5,
pp. 767–74, Dec. 2003.

[12] B. J. Kimura, G. W. Gilcrease, B. K. Showalter, J. N. Phan, and T. Wolfson,
“Diagnostic performance of a pocket-sized ultrasound device for quick-look
cardiac imaging.,” The American journal of emergency medicine, vol. 1, pp. 1–5,
Oct. 2010.

[13] L. Croft, W. Duvall, and M. Goldman, “A pilot study of the clinical impact of
hand-carried cardiac ultrasound in the medical clinic,” Echocardiography, vol. 23,
no. 6, pp. 439–446, 2006.

[14] M. Egan and a. Ionescu, “The pocket echocardiograph: a useful new tool?,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 9, pp. 721–5, Nov.
2008.

[15] S. Fukuda, K. Shimada, T. Kawasaki, H. Fujimoto, K. Maeda, H. Inanami,
K. Yoshida, S. Jissho, H. Taguchi, M. Yoshiyama, and J. Yoshikawa, “Pocket-
sized transthoracic echocardiography device for the measurement of cardiac
chamber size and function.,” Circulation journal : official journal of the Japanese
Circulation Society, vol. 73, pp. 1092–6, June 2009.

[16] K. Spencer and R. Lang, “Point of service echocardiography,” ACC Cardiosource
Review Journal, vol. 1458, no. 02, pp. 49–51, 2002.

[17] K. Spencer, “Hand-carried cardiac ultrasound,” Current Cardiovascular Imaging
Reports, vol. 17, pp. 399–403, May 2008.

[18] J. Wise, “Everyone’s a radiologist now,” British Medical Journal, vol. 336,
pp. 1041–1043, May 2008.

20



References

[19] H. Edwards, “Special Feature Let’s all jump on the ultrasound bandwagon :
further debate on the use of ultrasound,” Ultrasound, vol. 18, pp. 4 –7, 2010.

[20] R. Breitkreutz, S. Price, H. V. Steiger, F. H. Seeger, H. Ilper, H. Ackermann,
M. Rudolph, S. Uddin, M. a. Weigand, E. Müller, and F. Walcher, “Focused
echocardiographic evaluation in life support and peri-resuscitation of emergency
patients: A prospective trial.,” Resuscitation, vol. 81, pp. 1527–1533, Aug. 2010.

[21] D. M. Spevack, P. A. Tunick, and I. Kronzon, “Hand carried echocardiography
in the critical care setting.,” Echocardiography (Mount Kisco, N.Y.), vol. 20,
pp. 455–61, July 2003.

[22] R. D. Pozza, M. Loeff, R. Kozlik-Feldmann, and H. Netz, “Hand-
Carried Ultrasound Devices in Pediatric Cardiology: Clinical Experience
with Three Different Devices in 110 Patients.,” Journal of the American
Society of Echocardiography : official publication of the American Society of
Echocardiography, vol. 23, pp. 1231–1237, Oct. 2010.

[23] B. J. Kimura, “What Is an Echo Machine?,” Journal of the American Society of
Echocardiography, vol. 23, pp. 1238–1241, Dec. 2010.

[24] R. Sicari, M. Galderisi, J.-u. Voigt, G. Habib, J. L. Zamorano, P. Lancellotti,
and L. P. Badano, “The use of pocket-size imaging devices : a position
statement of the European Association of Echocardiography,” European Journal
of Echocardiography, pp. 10–12, 2011. Epub ahead of print 2011 Jan 07.

[25] T. M. Scalea, A. Rodriguez, W. C. Chiu, F. D. Brenneman, J. Fallon, W. F.,
K. Kato, M. G. McKenney, M. L. Nerlich, M. G. Ochsner, and H. Yoshii, “Focused
assessment with sonography for trauma (fast): results from an international
consensus conference,” J Trauma, vol. 46, no. 3, pp. 466–72, 1999.

[26] C. Hernandez, K. Shuler, H. Hannan, C. Sonyika, A. Likourezos, and J. Marshall,
“C.A.U.S.E.: Cardiac arrest ultra-sound exam–a better approach to managing
patients in primary non-arrhythmogenic cardiac arrest.,” Resuscitation, vol. 76,
pp. 198–206, Feb. 2008.

[27] A. J. Labovitz, V. E. Noble, M. Bierig, S. a. Goldstein, R. Jones, S. Kort, T. R.
Porter, K. T. Spencer, V. S. Tayal, and K. Wei, “Focused cardiac ultrasound
in the emergent setting: a consensus statement of the american society of
echocardiography and american college of emergency physicians.,” Journal of
the American Society of Echocardiography : official publication of the American
Society of Echocardiography, vol. 23, pp. 1225–30, Dec. 2010.

[28] S. Ebadollahi, S. Chang, and H. Wu, “Automatic view recognition in
echocardiogram videos using parts-based representation,” in Computer Vision
and Pattern Recognition,, 2004.

21

References

[19] H. Edwards, “Special Feature Let’s all jump on the ultrasound bandwagon :
further debate on the use of ultrasound,” Ultrasound, vol. 18, pp. 4 –7, 2010.

[20] R. Breitkreutz, S. Price, H. V. Steiger, F. H. Seeger, H. Ilper, H. Ackermann,
M. Rudolph, S. Uddin, M. a. Weigand, E. Müller, and F. Walcher, “Focused
echocardiographic evaluation in life support and peri-resuscitation of emergency
patients: A prospective trial.,” Resuscitation, vol. 81, pp. 1527–1533, Aug. 2010.

[21] D. M. Spevack, P. A. Tunick, and I. Kronzon, “Hand carried echocardiography
in the critical care setting.,” Echocardiography (Mount Kisco, N.Y.), vol. 20,
pp. 455–61, July 2003.

[22] R. D. Pozza, M. Loeff, R. Kozlik-Feldmann, and H. Netz, “Hand-
Carried Ultrasound Devices in Pediatric Cardiology: Clinical Experience
with Three Different Devices in 110 Patients.,” Journal of the American
Society of Echocardiography : official publication of the American Society of
Echocardiography, vol. 23, pp. 1231–1237, Oct. 2010.

[23] B. J. Kimura, “What Is an Echo Machine?,” Journal of the American Society of
Echocardiography, vol. 23, pp. 1238–1241, Dec. 2010.

[24] R. Sicari, M. Galderisi, J.-u. Voigt, G. Habib, J. L. Zamorano, P. Lancellotti,
and L. P. Badano, “The use of pocket-size imaging devices : a position
statement of the European Association of Echocardiography,” European Journal
of Echocardiography, pp. 10–12, 2011. Epub ahead of print 2011 Jan 07.

[25] T. M. Scalea, A. Rodriguez, W. C. Chiu, F. D. Brenneman, J. Fallon, W. F.,
K. Kato, M. G. McKenney, M. L. Nerlich, M. G. Ochsner, and H. Yoshii, “Focused
assessment with sonography for trauma (fast): results from an international
consensus conference,” J Trauma, vol. 46, no. 3, pp. 466–72, 1999.

[26] C. Hernandez, K. Shuler, H. Hannan, C. Sonyika, A. Likourezos, and J. Marshall,
“C.A.U.S.E.: Cardiac arrest ultra-sound exam–a better approach to managing
patients in primary non-arrhythmogenic cardiac arrest.,” Resuscitation, vol. 76,
pp. 198–206, Feb. 2008.

[27] A. J. Labovitz, V. E. Noble, M. Bierig, S. a. Goldstein, R. Jones, S. Kort, T. R.
Porter, K. T. Spencer, V. S. Tayal, and K. Wei, “Focused cardiac ultrasound
in the emergent setting: a consensus statement of the american society of
echocardiography and american college of emergency physicians.,” Journal of
the American Society of Echocardiography : official publication of the American
Society of Echocardiography, vol. 23, pp. 1225–30, Dec. 2010.

[28] S. Ebadollahi, S. Chang, and H. Wu, “Automatic view recognition in
echocardiogram videos using parts-based representation,” in Computer Vision
and Pattern Recognition,, 2004.

21

References

[19] H. Edwards, “Special Feature Let’s all jump on the ultrasound bandwagon :
further debate on the use of ultrasound,” Ultrasound, vol. 18, pp. 4 –7, 2010.

[20] R. Breitkreutz, S. Price, H. V. Steiger, F. H. Seeger, H. Ilper, H. Ackermann,
M. Rudolph, S. Uddin, M. a. Weigand, E. Müller, and F. Walcher, “Focused
echocardiographic evaluation in life support and peri-resuscitation of emergency
patients: A prospective trial.,” Resuscitation, vol. 81, pp. 1527–1533, Aug. 2010.

[21] D. M. Spevack, P. A. Tunick, and I. Kronzon, “Hand carried echocardiography
in the critical care setting.,” Echocardiography (Mount Kisco, N.Y.), vol. 20,
pp. 455–61, July 2003.

[22] R. D. Pozza, M. Loeff, R. Kozlik-Feldmann, and H. Netz, “Hand-
Carried Ultrasound Devices in Pediatric Cardiology: Clinical Experience
with Three Different Devices in 110 Patients.,” Journal of the American
Society of Echocardiography : official publication of the American Society of
Echocardiography, vol. 23, pp. 1231–1237, Oct. 2010.

[23] B. J. Kimura, “What Is an Echo Machine?,” Journal of the American Society of
Echocardiography, vol. 23, pp. 1238–1241, Dec. 2010.

[24] R. Sicari, M. Galderisi, J.-u. Voigt, G. Habib, J. L. Zamorano, P. Lancellotti,
and L. P. Badano, “The use of pocket-size imaging devices : a position
statement of the European Association of Echocardiography,” European Journal
of Echocardiography, pp. 10–12, 2011. Epub ahead of print 2011 Jan 07.

[25] T. M. Scalea, A. Rodriguez, W. C. Chiu, F. D. Brenneman, J. Fallon, W. F.,
K. Kato, M. G. McKenney, M. L. Nerlich, M. G. Ochsner, and H. Yoshii, “Focused
assessment with sonography for trauma (fast): results from an international
consensus conference,” J Trauma, vol. 46, no. 3, pp. 466–72, 1999.

[26] C. Hernandez, K. Shuler, H. Hannan, C. Sonyika, A. Likourezos, and J. Marshall,
“C.A.U.S.E.: Cardiac arrest ultra-sound exam–a better approach to managing
patients in primary non-arrhythmogenic cardiac arrest.,” Resuscitation, vol. 76,
pp. 198–206, Feb. 2008.

[27] A. J. Labovitz, V. E. Noble, M. Bierig, S. a. Goldstein, R. Jones, S. Kort, T. R.
Porter, K. T. Spencer, V. S. Tayal, and K. Wei, “Focused cardiac ultrasound
in the emergent setting: a consensus statement of the american society of
echocardiography and american college of emergency physicians.,” Journal of
the American Society of Echocardiography : official publication of the American
Society of Echocardiography, vol. 23, pp. 1225–30, Dec. 2010.

[28] S. Ebadollahi, S. Chang, and H. Wu, “Automatic view recognition in
echocardiogram videos using parts-based representation,” in Computer Vision
and Pattern Recognition,, 2004.

21

References

[19] H. Edwards, “Special Feature Let’s all jump on the ultrasound bandwagon :
further debate on the use of ultrasound,” Ultrasound, vol. 18, pp. 4 –7, 2010.

[20] R. Breitkreutz, S. Price, H. V. Steiger, F. H. Seeger, H. Ilper, H. Ackermann,
M. Rudolph, S. Uddin, M. a. Weigand, E. Müller, and F. Walcher, “Focused
echocardiographic evaluation in life support and peri-resuscitation of emergency
patients: A prospective trial.,” Resuscitation, vol. 81, pp. 1527–1533, Aug. 2010.

[21] D. M. Spevack, P. A. Tunick, and I. Kronzon, “Hand carried echocardiography
in the critical care setting.,” Echocardiography (Mount Kisco, N.Y.), vol. 20,
pp. 455–61, July 2003.

[22] R. D. Pozza, M. Loeff, R. Kozlik-Feldmann, and H. Netz, “Hand-
Carried Ultrasound Devices in Pediatric Cardiology: Clinical Experience
with Three Different Devices in 110 Patients.,” Journal of the American
Society of Echocardiography : official publication of the American Society of
Echocardiography, vol. 23, pp. 1231–1237, Oct. 2010.

[23] B. J. Kimura, “What Is an Echo Machine?,” Journal of the American Society of
Echocardiography, vol. 23, pp. 1238–1241, Dec. 2010.

[24] R. Sicari, M. Galderisi, J.-u. Voigt, G. Habib, J. L. Zamorano, P. Lancellotti,
and L. P. Badano, “The use of pocket-size imaging devices : a position
statement of the European Association of Echocardiography,” European Journal
of Echocardiography, pp. 10–12, 2011. Epub ahead of print 2011 Jan 07.

[25] T. M. Scalea, A. Rodriguez, W. C. Chiu, F. D. Brenneman, J. Fallon, W. F.,
K. Kato, M. G. McKenney, M. L. Nerlich, M. G. Ochsner, and H. Yoshii, “Focused
assessment with sonography for trauma (fast): results from an international
consensus conference,” J Trauma, vol. 46, no. 3, pp. 466–72, 1999.

[26] C. Hernandez, K. Shuler, H. Hannan, C. Sonyika, A. Likourezos, and J. Marshall,
“C.A.U.S.E.: Cardiac arrest ultra-sound exam–a better approach to managing
patients in primary non-arrhythmogenic cardiac arrest.,” Resuscitation, vol. 76,
pp. 198–206, Feb. 2008.

[27] A. J. Labovitz, V. E. Noble, M. Bierig, S. a. Goldstein, R. Jones, S. Kort, T. R.
Porter, K. T. Spencer, V. S. Tayal, and K. Wei, “Focused cardiac ultrasound
in the emergent setting: a consensus statement of the american society of
echocardiography and american college of emergency physicians.,” Journal of
the American Society of Echocardiography : official publication of the American
Society of Echocardiography, vol. 23, pp. 1225–30, Dec. 2010.

[28] S. Ebadollahi, S. Chang, and H. Wu, “Automatic view recognition in
echocardiogram videos using parts-based representation,” in Computer Vision
and Pattern Recognition,, 2004.

21



References

[29] S. V. Aschkenasy, C. Jansen, R. Osterwalder, A. Linka, M. Unser, S. Marsch, and
P. Hunziker, “Unsupervised image classification of medical ultrasound data by
multiresolution elastic registration.,” Ultrasound in medicine & biology, vol. 32,
pp. 1047–54, July 2006.

[30] M. Otey, J. Bi, S. Krishna, B. Rao, J. Stoeckel, A. Katz, J. Han, and
S. Parthasarathy, “Automatic view recognition for cardiac ultrasound images,”
in in Proceedings of Int’l Workshop on Computer Vision for Intravascular and
Intracardiac Imaging, pp. 187–194, 2006.

[31] J. H. Park, S. Zhou, C. Simopoulos, J. Otsuki, and D. Comaniciu, “Automatic
cardiac view classification of echocardiogram,” in 2007 IEEE 11th International
Conference on Computer Vision, 2007.

[32] F. Orderud, H. Torp, and S. I. Rabben, “Automatic alignment of standard
views in 3D echocardiograms using real-time tracking,” Proceedings of SPIE,
pp. 72650D–72650D–7, 2009.

[33] J. M. DeCara, E. Toledo, I. S. Salgo, G. Lammertin, L. Weinert, and R. M.
Lang, “Evaluation of left ventricular systolic function using automated angle-
independent motion tracking of mitral annular displacement.,” Journal of the
American Society of Echocardiography, vol. 18, pp. 1266–9, Dec. 2005.

[34] W. Tsang, H. Ahmad, A. R. Patel, L. Sugeng, I. S. Salgo, L. Weinert, V. Mor-
Avi, and R. M. Lang, “Rapid estimation of left ventricular function using
echocardiographic speckle-tracking of mitral annular displacement.,” Journal of
the American Society of Echocardiography, vol. 23, pp. 511–5, May 2010.

[35] K. Emilsson, “The relation between mitral annulus motion and ejection fraction:
A nonlinear function,” Journal of the American Society of Echocardiography,
vol. 13, pp. 896–901, Oct. 2000.

[36] M. F. Elnoamany and A. K. Abdelhameed, “Mitral annular motion as a surrogate
for left ventricular function: correlation with brain natriuretic peptide levels.,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 7, pp. 187–98, June
2006.

[37] S. T. Nevo, M. van Stralen, A. M. Vossepoel, J. H. C. Reiber, N. de Jong,
A. F. W. van der Steen, and J. G. Bosch, “Automated tracking of the mitral
valve annulus motion in apical echocardiographic images using multidimensional
dynamic programming.,” Ultrasound in medicine & biology, vol. 33, pp. 1389–99,
Sept. 2007.

[38] Y. Eto, H. Yamada, J.-H. Shin, D. a. Agler, H. Tsujino, J.-X. Qin,
G. Saracino, N. L. Greenberg, J. D. Thomas, and T. Shiota, “Automated
mitral annular tracking: a novel method for evaluating mitral annular motion
using two-dimensional echocardiography.,” Journal of the American Society of
Echocardiography, vol. 18, pp. 306–12, Apr. 2005.

22

References

[29] S. V. Aschkenasy, C. Jansen, R. Osterwalder, A. Linka, M. Unser, S. Marsch, and
P. Hunziker, “Unsupervised image classification of medical ultrasound data by
multiresolution elastic registration.,” Ultrasound in medicine & biology, vol. 32,
pp. 1047–54, July 2006.

[30] M. Otey, J. Bi, S. Krishna, B. Rao, J. Stoeckel, A. Katz, J. Han, and
S. Parthasarathy, “Automatic view recognition for cardiac ultrasound images,”
in in Proceedings of Int’l Workshop on Computer Vision for Intravascular and
Intracardiac Imaging, pp. 187–194, 2006.

[31] J. H. Park, S. Zhou, C. Simopoulos, J. Otsuki, and D. Comaniciu, “Automatic
cardiac view classification of echocardiogram,” in 2007 IEEE 11th International
Conference on Computer Vision, 2007.

[32] F. Orderud, H. Torp, and S. I. Rabben, “Automatic alignment of standard
views in 3D echocardiograms using real-time tracking,” Proceedings of SPIE,
pp. 72650D–72650D–7, 2009.

[33] J. M. DeCara, E. Toledo, I. S. Salgo, G. Lammertin, L. Weinert, and R. M.
Lang, “Evaluation of left ventricular systolic function using automated angle-
independent motion tracking of mitral annular displacement.,” Journal of the
American Society of Echocardiography, vol. 18, pp. 1266–9, Dec. 2005.

[34] W. Tsang, H. Ahmad, A. R. Patel, L. Sugeng, I. S. Salgo, L. Weinert, V. Mor-
Avi, and R. M. Lang, “Rapid estimation of left ventricular function using
echocardiographic speckle-tracking of mitral annular displacement.,” Journal of
the American Society of Echocardiography, vol. 23, pp. 511–5, May 2010.

[35] K. Emilsson, “The relation between mitral annulus motion and ejection fraction:
A nonlinear function,” Journal of the American Society of Echocardiography,
vol. 13, pp. 896–901, Oct. 2000.

[36] M. F. Elnoamany and A. K. Abdelhameed, “Mitral annular motion as a surrogate
for left ventricular function: correlation with brain natriuretic peptide levels.,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 7, pp. 187–98, June
2006.

[37] S. T. Nevo, M. van Stralen, A. M. Vossepoel, J. H. C. Reiber, N. de Jong,
A. F. W. van der Steen, and J. G. Bosch, “Automated tracking of the mitral
valve annulus motion in apical echocardiographic images using multidimensional
dynamic programming.,” Ultrasound in medicine & biology, vol. 33, pp. 1389–99,
Sept. 2007.

[38] Y. Eto, H. Yamada, J.-H. Shin, D. a. Agler, H. Tsujino, J.-X. Qin,
G. Saracino, N. L. Greenberg, J. D. Thomas, and T. Shiota, “Automated
mitral annular tracking: a novel method for evaluating mitral annular motion
using two-dimensional echocardiography.,” Journal of the American Society of
Echocardiography, vol. 18, pp. 306–12, Apr. 2005.

22

References

[29] S. V. Aschkenasy, C. Jansen, R. Osterwalder, A. Linka, M. Unser, S. Marsch, and
P. Hunziker, “Unsupervised image classification of medical ultrasound data by
multiresolution elastic registration.,” Ultrasound in medicine & biology, vol. 32,
pp. 1047–54, July 2006.

[30] M. Otey, J. Bi, S. Krishna, B. Rao, J. Stoeckel, A. Katz, J. Han, and
S. Parthasarathy, “Automatic view recognition for cardiac ultrasound images,”
in in Proceedings of Int’l Workshop on Computer Vision for Intravascular and
Intracardiac Imaging, pp. 187–194, 2006.

[31] J. H. Park, S. Zhou, C. Simopoulos, J. Otsuki, and D. Comaniciu, “Automatic
cardiac view classification of echocardiogram,” in 2007 IEEE 11th International
Conference on Computer Vision, 2007.

[32] F. Orderud, H. Torp, and S. I. Rabben, “Automatic alignment of standard
views in 3D echocardiograms using real-time tracking,” Proceedings of SPIE,
pp. 72650D–72650D–7, 2009.

[33] J. M. DeCara, E. Toledo, I. S. Salgo, G. Lammertin, L. Weinert, and R. M.
Lang, “Evaluation of left ventricular systolic function using automated angle-
independent motion tracking of mitral annular displacement.,” Journal of the
American Society of Echocardiography, vol. 18, pp. 1266–9, Dec. 2005.

[34] W. Tsang, H. Ahmad, A. R. Patel, L. Sugeng, I. S. Salgo, L. Weinert, V. Mor-
Avi, and R. M. Lang, “Rapid estimation of left ventricular function using
echocardiographic speckle-tracking of mitral annular displacement.,” Journal of
the American Society of Echocardiography, vol. 23, pp. 511–5, May 2010.

[35] K. Emilsson, “The relation between mitral annulus motion and ejection fraction:
A nonlinear function,” Journal of the American Society of Echocardiography,
vol. 13, pp. 896–901, Oct. 2000.

[36] M. F. Elnoamany and A. K. Abdelhameed, “Mitral annular motion as a surrogate
for left ventricular function: correlation with brain natriuretic peptide levels.,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 7, pp. 187–98, June
2006.

[37] S. T. Nevo, M. van Stralen, A. M. Vossepoel, J. H. C. Reiber, N. de Jong,
A. F. W. van der Steen, and J. G. Bosch, “Automated tracking of the mitral
valve annulus motion in apical echocardiographic images using multidimensional
dynamic programming.,” Ultrasound in medicine & biology, vol. 33, pp. 1389–99,
Sept. 2007.

[38] Y. Eto, H. Yamada, J.-H. Shin, D. a. Agler, H. Tsujino, J.-X. Qin,
G. Saracino, N. L. Greenberg, J. D. Thomas, and T. Shiota, “Automated
mitral annular tracking: a novel method for evaluating mitral annular motion
using two-dimensional echocardiography.,” Journal of the American Society of
Echocardiography, vol. 18, pp. 306–12, Apr. 2005.

22

References

[29] S. V. Aschkenasy, C. Jansen, R. Osterwalder, A. Linka, M. Unser, S. Marsch, and
P. Hunziker, “Unsupervised image classification of medical ultrasound data by
multiresolution elastic registration.,” Ultrasound in medicine & biology, vol. 32,
pp. 1047–54, July 2006.

[30] M. Otey, J. Bi, S. Krishna, B. Rao, J. Stoeckel, A. Katz, J. Han, and
S. Parthasarathy, “Automatic view recognition for cardiac ultrasound images,”
in in Proceedings of Int’l Workshop on Computer Vision for Intravascular and
Intracardiac Imaging, pp. 187–194, 2006.

[31] J. H. Park, S. Zhou, C. Simopoulos, J. Otsuki, and D. Comaniciu, “Automatic
cardiac view classification of echocardiogram,” in 2007 IEEE 11th International
Conference on Computer Vision, 2007.

[32] F. Orderud, H. Torp, and S. I. Rabben, “Automatic alignment of standard
views in 3D echocardiograms using real-time tracking,” Proceedings of SPIE,
pp. 72650D–72650D–7, 2009.

[33] J. M. DeCara, E. Toledo, I. S. Salgo, G. Lammertin, L. Weinert, and R. M.
Lang, “Evaluation of left ventricular systolic function using automated angle-
independent motion tracking of mitral annular displacement.,” Journal of the
American Society of Echocardiography, vol. 18, pp. 1266–9, Dec. 2005.

[34] W. Tsang, H. Ahmad, A. R. Patel, L. Sugeng, I. S. Salgo, L. Weinert, V. Mor-
Avi, and R. M. Lang, “Rapid estimation of left ventricular function using
echocardiographic speckle-tracking of mitral annular displacement.,” Journal of
the American Society of Echocardiography, vol. 23, pp. 511–5, May 2010.

[35] K. Emilsson, “The relation between mitral annulus motion and ejection fraction:
A nonlinear function,” Journal of the American Society of Echocardiography,
vol. 13, pp. 896–901, Oct. 2000.

[36] M. F. Elnoamany and A. K. Abdelhameed, “Mitral annular motion as a surrogate
for left ventricular function: correlation with brain natriuretic peptide levels.,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 7, pp. 187–98, June
2006.

[37] S. T. Nevo, M. van Stralen, A. M. Vossepoel, J. H. C. Reiber, N. de Jong,
A. F. W. van der Steen, and J. G. Bosch, “Automated tracking of the mitral
valve annulus motion in apical echocardiographic images using multidimensional
dynamic programming.,” Ultrasound in medicine & biology, vol. 33, pp. 1389–99,
Sept. 2007.

[38] Y. Eto, H. Yamada, J.-H. Shin, D. a. Agler, H. Tsujino, J.-X. Qin,
G. Saracino, N. L. Greenberg, J. D. Thomas, and T. Shiota, “Automated
mitral annular tracking: a novel method for evaluating mitral annular motion
using two-dimensional echocardiography.,” Journal of the American Society of
Echocardiography, vol. 18, pp. 306–12, Apr. 2005.

22



References

[39] Philips, “Qlab cardiac analysis [online].” http://www.healthcare.philips.

com/in_en/products/ultrasound/technologies/QLAB/cardiac/index.wpd,
October 2010.

[40] L. K. Williams, M. P. Frenneaux, and R. P. Steeds, “Echocardiography in
hypertrophic cardiomyopathy diagnosis, prognosis, and role in management.,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 10, pp. iii9–14, Dec.
2009.

[41] E. Braunwald, D. Zipes, and L. P., eds., Heart disease: a textbook of cardiovascular
medicine, vol. 1. Philadelphia, Pennsylvania: W.B. Saunders Company, 6th ed.,
2001.

[42] G. Mancia, G. De Backer, A. Dominiczak, R. Cifkova, R. Fagard, G. Germano,
G. Grassi, A. M. Heagerty, S. E. Kjeldsen, S. Laurent, K. Narkiewicz, L. Ruilope,
A. Rynkiewicz, R. E. Schmieder, H. A. Boudier, A. Zanchetti, A. Vahanian,
J. Camm, R. De Caterina, V. Dean, K. Dickstein, G. Filippatos, C. Funck-
Brentano, I. Hellemans, S. D. Kristensen, K. McGregor, U. Sechtem, S. Silber,
M. Tendera, P. Widimsky, J. L. Zamorano, S. Erdine, W. Kiowski, E. Agabiti-
Rosei, E. Ambrosioni, L. H. Lindholm, M. Viigimaa, S. Adamopoulos, E. Agabiti-
Rosei, E. Ambrosioni, V. Bertomeu, D. Clement, S. Erdine, C. Farsang, D. Gaita,
G. Lip, J. M. Mallion, A. J. Manolis, P. M. Nilsson, E. O’Brien, P. Ponikowski,
J. Redon, F. Ruschitzka, J. Tamargo, P. van Zwieten, B. Waeber, and B. Williams,
“2007 guidelines for the management of arterial hypertension: The task force for
the management of arterial hypertension of the european society of hypertension
(esh) and of the european society of cardiology (esc),” J Hypertens, vol. 25, no. 6,
pp. 1105–87, 2007.

[43] D. Harpaz, T. Rosenthal, E. Peleg, and A. Shamiss, “The correlation between
isolated interventricular septal hypertrophy and 24-h ambulatory blood pressure
monitoring in apparently healthy air crew.,” Blood pressure monitoring, vol. 7,
pp. 225–9, Aug. 2002.

[44] P. Greenland, J. S. Alpert, G. A. Beller, E. J. Benjamin, M. J. Budoff, Z. A.
Fayad, E. Foster, M. A. Hlatky, J. M. Hodgson, F. G. Kushner, M. S. Lauer,
L. J. Shaw, J. Smith, Sidney C., A. J. Taylor, W. S. Weintraub, and N. K.
Wenger, “2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk
in Asymptomatic Adults: A Report of the American College of Cardiology
Foundation/American Heart Association Task Force on Practice Guidelines
Developed in Collaboration With the American Society of Echocardiography,
American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and
Prevention, Society for Cardiovascular Angiography and Interventions, Society of
Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic
Resonance,” J Am Coll Cardiol, vol. 56, no. 25, pp. e50–103, 2010.

23

References

[39] Philips, “Qlab cardiac analysis [online].” http://www.healthcare.philips.

com/in_en/products/ultrasound/technologies/QLAB/cardiac/index.wpd,
October 2010.

[40] L. K. Williams, M. P. Frenneaux, and R. P. Steeds, “Echocardiography in
hypertrophic cardiomyopathy diagnosis, prognosis, and role in management.,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 10, pp. iii9–14, Dec.
2009.

[41] E. Braunwald, D. Zipes, and L. P., eds., Heart disease: a textbook of cardiovascular
medicine, vol. 1. Philadelphia, Pennsylvania: W.B. Saunders Company, 6th ed.,
2001.

[42] G. Mancia, G. De Backer, A. Dominiczak, R. Cifkova, R. Fagard, G. Germano,
G. Grassi, A. M. Heagerty, S. E. Kjeldsen, S. Laurent, K. Narkiewicz, L. Ruilope,
A. Rynkiewicz, R. E. Schmieder, H. A. Boudier, A. Zanchetti, A. Vahanian,
J. Camm, R. De Caterina, V. Dean, K. Dickstein, G. Filippatos, C. Funck-
Brentano, I. Hellemans, S. D. Kristensen, K. McGregor, U. Sechtem, S. Silber,
M. Tendera, P. Widimsky, J. L. Zamorano, S. Erdine, W. Kiowski, E. Agabiti-
Rosei, E. Ambrosioni, L. H. Lindholm, M. Viigimaa, S. Adamopoulos, E. Agabiti-
Rosei, E. Ambrosioni, V. Bertomeu, D. Clement, S. Erdine, C. Farsang, D. Gaita,
G. Lip, J. M. Mallion, A. J. Manolis, P. M. Nilsson, E. O’Brien, P. Ponikowski,
J. Redon, F. Ruschitzka, J. Tamargo, P. van Zwieten, B. Waeber, and B. Williams,
“2007 guidelines for the management of arterial hypertension: The task force for
the management of arterial hypertension of the european society of hypertension
(esh) and of the european society of cardiology (esc),” J Hypertens, vol. 25, no. 6,
pp. 1105–87, 2007.

[43] D. Harpaz, T. Rosenthal, E. Peleg, and A. Shamiss, “The correlation between
isolated interventricular septal hypertrophy and 24-h ambulatory blood pressure
monitoring in apparently healthy air crew.,” Blood pressure monitoring, vol. 7,
pp. 225–9, Aug. 2002.

[44] P. Greenland, J. S. Alpert, G. A. Beller, E. J. Benjamin, M. J. Budoff, Z. A.
Fayad, E. Foster, M. A. Hlatky, J. M. Hodgson, F. G. Kushner, M. S. Lauer,
L. J. Shaw, J. Smith, Sidney C., A. J. Taylor, W. S. Weintraub, and N. K.
Wenger, “2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk
in Asymptomatic Adults: A Report of the American College of Cardiology
Foundation/American Heart Association Task Force on Practice Guidelines
Developed in Collaboration With the American Society of Echocardiography,
American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and
Prevention, Society for Cardiovascular Angiography and Interventions, Society of
Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic
Resonance,” J Am Coll Cardiol, vol. 56, no. 25, pp. e50–103, 2010.

23

References

[39] Philips, “Qlab cardiac analysis [online].” http://www.healthcare.philips.

com/in_en/products/ultrasound/technologies/QLAB/cardiac/index.wpd,
October 2010.

[40] L. K. Williams, M. P. Frenneaux, and R. P. Steeds, “Echocardiography in
hypertrophic cardiomyopathy diagnosis, prognosis, and role in management.,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 10, pp. iii9–14, Dec.
2009.

[41] E. Braunwald, D. Zipes, and L. P., eds., Heart disease: a textbook of cardiovascular
medicine, vol. 1. Philadelphia, Pennsylvania: W.B. Saunders Company, 6th ed.,
2001.

[42] G. Mancia, G. De Backer, A. Dominiczak, R. Cifkova, R. Fagard, G. Germano,
G. Grassi, A. M. Heagerty, S. E. Kjeldsen, S. Laurent, K. Narkiewicz, L. Ruilope,
A. Rynkiewicz, R. E. Schmieder, H. A. Boudier, A. Zanchetti, A. Vahanian,
J. Camm, R. De Caterina, V. Dean, K. Dickstein, G. Filippatos, C. Funck-
Brentano, I. Hellemans, S. D. Kristensen, K. McGregor, U. Sechtem, S. Silber,
M. Tendera, P. Widimsky, J. L. Zamorano, S. Erdine, W. Kiowski, E. Agabiti-
Rosei, E. Ambrosioni, L. H. Lindholm, M. Viigimaa, S. Adamopoulos, E. Agabiti-
Rosei, E. Ambrosioni, V. Bertomeu, D. Clement, S. Erdine, C. Farsang, D. Gaita,
G. Lip, J. M. Mallion, A. J. Manolis, P. M. Nilsson, E. O’Brien, P. Ponikowski,
J. Redon, F. Ruschitzka, J. Tamargo, P. van Zwieten, B. Waeber, and B. Williams,
“2007 guidelines for the management of arterial hypertension: The task force for
the management of arterial hypertension of the european society of hypertension
(esh) and of the european society of cardiology (esc),” J Hypertens, vol. 25, no. 6,
pp. 1105–87, 2007.

[43] D. Harpaz, T. Rosenthal, E. Peleg, and A. Shamiss, “The correlation between
isolated interventricular septal hypertrophy and 24-h ambulatory blood pressure
monitoring in apparently healthy air crew.,” Blood pressure monitoring, vol. 7,
pp. 225–9, Aug. 2002.

[44] P. Greenland, J. S. Alpert, G. A. Beller, E. J. Benjamin, M. J. Budoff, Z. A.
Fayad, E. Foster, M. A. Hlatky, J. M. Hodgson, F. G. Kushner, M. S. Lauer,
L. J. Shaw, J. Smith, Sidney C., A. J. Taylor, W. S. Weintraub, and N. K.
Wenger, “2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk
in Asymptomatic Adults: A Report of the American College of Cardiology
Foundation/American Heart Association Task Force on Practice Guidelines
Developed in Collaboration With the American Society of Echocardiography,
American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and
Prevention, Society for Cardiovascular Angiography and Interventions, Society of
Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic
Resonance,” J Am Coll Cardiol, vol. 56, no. 25, pp. e50–103, 2010.

23

References

[39] Philips, “Qlab cardiac analysis [online].” http://www.healthcare.philips.

com/in_en/products/ultrasound/technologies/QLAB/cardiac/index.wpd,
October 2010.

[40] L. K. Williams, M. P. Frenneaux, and R. P. Steeds, “Echocardiography in
hypertrophic cardiomyopathy diagnosis, prognosis, and role in management.,”
European journal of echocardiography : the journal of the Working Group on
Echocardiography of the European Society of Cardiology, vol. 10, pp. iii9–14, Dec.
2009.

[41] E. Braunwald, D. Zipes, and L. P., eds., Heart disease: a textbook of cardiovascular
medicine, vol. 1. Philadelphia, Pennsylvania: W.B. Saunders Company, 6th ed.,
2001.

[42] G. Mancia, G. De Backer, A. Dominiczak, R. Cifkova, R. Fagard, G. Germano,
G. Grassi, A. M. Heagerty, S. E. Kjeldsen, S. Laurent, K. Narkiewicz, L. Ruilope,
A. Rynkiewicz, R. E. Schmieder, H. A. Boudier, A. Zanchetti, A. Vahanian,
J. Camm, R. De Caterina, V. Dean, K. Dickstein, G. Filippatos, C. Funck-
Brentano, I. Hellemans, S. D. Kristensen, K. McGregor, U. Sechtem, S. Silber,
M. Tendera, P. Widimsky, J. L. Zamorano, S. Erdine, W. Kiowski, E. Agabiti-
Rosei, E. Ambrosioni, L. H. Lindholm, M. Viigimaa, S. Adamopoulos, E. Agabiti-
Rosei, E. Ambrosioni, V. Bertomeu, D. Clement, S. Erdine, C. Farsang, D. Gaita,
G. Lip, J. M. Mallion, A. J. Manolis, P. M. Nilsson, E. O’Brien, P. Ponikowski,
J. Redon, F. Ruschitzka, J. Tamargo, P. van Zwieten, B. Waeber, and B. Williams,
“2007 guidelines for the management of arterial hypertension: The task force for
the management of arterial hypertension of the european society of hypertension
(esh) and of the european society of cardiology (esc),” J Hypertens, vol. 25, no. 6,
pp. 1105–87, 2007.

[43] D. Harpaz, T. Rosenthal, E. Peleg, and A. Shamiss, “The correlation between
isolated interventricular septal hypertrophy and 24-h ambulatory blood pressure
monitoring in apparently healthy air crew.,” Blood pressure monitoring, vol. 7,
pp. 225–9, Aug. 2002.

[44] P. Greenland, J. S. Alpert, G. A. Beller, E. J. Benjamin, M. J. Budoff, Z. A.
Fayad, E. Foster, M. A. Hlatky, J. M. Hodgson, F. G. Kushner, M. S. Lauer,
L. J. Shaw, J. Smith, Sidney C., A. J. Taylor, W. S. Weintraub, and N. K.
Wenger, “2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk
in Asymptomatic Adults: A Report of the American College of Cardiology
Foundation/American Heart Association Task Force on Practice Guidelines
Developed in Collaboration With the American Society of Echocardiography,
American Society of Nuclear Cardiology, Society of Atherosclerosis Imaging and
Prevention, Society for Cardiovascular Angiography and Interventions, Society of
Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic
Resonance,” J Am Coll Cardiol, vol. 56, no. 25, pp. e50–103, 2010.

23



References

[45] M. Foppa, B. B. Duncan, and L. E. P. Rohde, “Echocardiography-based left
ventricular mass estimation. How should we define hypertrophy?,” Cardiovascular
ultrasound, vol. 3, p. 17, Jan. 2005.

[46] R. M. Lang, M. Bierig, R. B. Devereux, F. a. Flachskampf, E. Foster, P. a.
Pellikka, M. H. Picard, M. J. Roman, J. Seward, J. Shanewise, S. Solomon,
K. T. Spencer, M. St John Sutton, and W. Stewart, “Recommendations for
chamber quantification.,” European journal of echocardiography : the journal of
the Working Group on Echocardiography of the European Society of Cardiology,
vol. 7, pp. 79–108, Mar. 2006.

[47] H. Moladoust, M. Mokhtari-Dizaji, and Z. Ojaghi-Haghighi, “Determination of
instantaneous interventricular septum wall thickness by processing sequential 2D
echocardiographic images.,” Pakistan journal of biological sciences: PJBS, vol. 10,
no. 3, p. 454, 2007.

[48] N. Subramanian, D. Padfield, S. Thiruvenkadam, A. Narasimhamurthy, and
S. Frigstad, “Automated interventricular septum thickness measurement from
B-mode echocardiograms.,” Medical image computing and computer-assisted
intervention : MICCAI ... International Conference on Medical Image Computing
and Computer-Assisted Intervention, vol. 13, pp. 510–7, Jan. 2010.

[49] M. S. Sklansky, T. R. Nelson, and D. H. Pretorius, “Usefulness of gated three-
dimensional fetal echocardiography to reconstruct and display structures not
visualized with two-dimensional imaging.,” The American journal of cardiology,
vol. 80, pp. 665–8, Sept. 1997.

[50] G. R. DeVore, P. Falkensammer, M. S. Sklansky, and L. D. Platt, “Spatio-
temporal image correlation (STIC): new technology for evaluation of the fetal
heart.,” Ultrasound in obstetrics & gynecology : the official journal of the
International Society of Ultrasound in Obstetrics and Gynecology, vol. 22, pp. 380–
7, Oct. 2003.
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Chapter 2

Kalman filter based
segmentation
Sten Roar Snare
Dept. Circulation and Medical Imaging, NTNU

In this background chapter, the segmentation scheme using Kalman filter and non-
uniform rational B-splines is explained. The purpose of the chapter is to give the reader
a more thorough walkthrough than what has been possible in the papers. Most of the
descriptions in this chapter are based on [1–5], where also more general background
information about state estimation and deformable models can be found.

2.1 Linear state space models

State space models are frequently encountered in control engineering. The generalized
concept of a state space model is typically based on two separate models; the kinematic
model and the measurement model. The kinematic model aims to describe how the
process, characterized by its states, changes with time as a function of external inputs.
The measurement model describes how the measurable variables, here denoted as z,
are related to the process states. Generally, considering the system states as x, the
input as u, the input noise as w and the measurement noise as v, a discrete system
using the discrete time variable k, can be described by the state equation f and the
output equation h:

xk+1 = f (xk,uk,wk) (2.1)

zk = h(xk,vk) (2.2)

When f and h are linear in their states and inputs, the discrete system equations can
be simplified as:

xk+1 = Fkxk +Bkuk +wk (2.3)

zk = Hkxk + vk (2.4)

Fk is called the ”state matrix”, Bk is the ”input matrix” and Hk is the ”output
matrix”. The system can thus be investigated by regular linear algebra. Typically, few
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2.2. Kalman Filter

real-life systems are inherently linear. It is thus common to either simplify the system
descriptions to achieve a sufficiently accurate linear system model or to linearize the
nonlinear system model around a working point. The latter means that the system can
be considered a linear process as long as the system states are within certain bounds.

By estimating the system states for each time step, it is possible to characterize
the system behavior with time.

2.2 Kalman Filter

The topic of estimation deals with inferring values, which are unknown or random, from
a set of observations which should be considered as random variables. If the variable
to estimate is an unknown but deterministic number, the term parameter estimation is
used. If the variable itself is a random variable, the common term is random variable
estimation. A typical example is where one want to accurately estimate a random
variable x from a set of related observations z1, z2, . . . , zN . The estimate x̂ is then
found by:

x̂ = x̂(z) = φ(z1, z2, . . . , zN ) (2.5)

To calculate the estimator, φ, it is necessary to know the conditional probability
f(x|z) [5]. A Bayes procedure with an appropriate cost function can then be applied
to achieve estimates of x. If the relation between x and z was linear, simpler techniques
such as linear mean square estimation could be used. In case of ultrasound cineloop
segmentation, the variables of interest, i.e. the system states, are constantly changing.
The random variables are dynamic. Thus, different estimation schemes are required.

Problems with dynamic random variables were traditionally solved using Wiener
filters. In Wiener filtering, the goal is to estimate a sequence x[n] of a jointly stationary
random process from observations of another related stationary random process z[n].
In case of the finite impulse response (FIR) Wiener filters, estimating x[n] requires
knowledge of z[n] and the last P-1 values z[n − 1], z[n − 2], . . . , z[n − P + 1], where
P is the FIR filter length. The linear mean square optimal solution of the FIR filter
can then be found using the discrete Wiener-Hopf Equations [5]. By formulating a
recursive or causal infinite impulse response (IIR) version of the Wiener filter, the
filter can be made shorter and more efficient. Solving the Wiener filter numerically
can be computationally intractable, especially for larger or more complex systems. In
addition, the Wiener filters inherently assume the signals to be noiselike, which often
is an invalid assumption.

In 1960, R.E. Kalman presented a new way of formulating the minimum mean-
square error (MMSE) filtering problem [4]. He used state space methods, and his
recursive filter method was much more practical than the Wiener filter solutions
commonly used at the time. Especially the ability to efficiently handle multiple
input/output systems (MIMO), made the Kalman filter popular for instance in
navigation problems. One of the early major achievements was the application in
trajectory estimation in the Apollo space program, thus contributing to the first
manned excursion to the moon. Since its introduction, the Kalman filter has found
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manned excursion to the moon. Since its introduction, the Kalman filter has found
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numerous applications within space and military technology, communication systems,
computer science, economy and control theory.

The Kalman filter estimates the internal states of linear dynamic systems, using
series of noisy input measurements. The system models f and h are constrained to be
linear, and the system noise terms w and v are assumed to be uncorrelated Gaussian
zero mean processes. The Kalman filters are based on Markov chains, perturbed by
Gaussian noise. In practice this means that the next state only depends on the current
state. In mathematical notation, we may write:

f (xk,uk,wk) = Fkxk +Bkuk +wk (2.6)

h(xk,vk) = Hkxk + vk (2.7)

wk ∝ N (0,Qk) vk ∝ N (0,Rk) (2.8)

E(wiw
T
j ) = Qiδi−j E(viv

T
j ) = Riδi−j (2.9)

E(wkv
T
k ) = 0 (2.10)

The matricesQk andRk are the covariance matrices corresponding to the second order
statistics of the process and measurement noise values. As the input is Gaussian and
the model is linear, the state and output will also be Gaussian and fully described by
their means and covariances. The Kalman filter is a two-step process, where the first
is the prediction step and the second is the update step. During the prediction step, a
prior state estimate, x̄k is calculated at time k, before taking the measurements:

x̄k = Fkx̂k−1 +Bkuk (2.11)

P̄k = FkP̂k−1F
T
k +Qk (2.12)

The posterior state estimate, x̂k, after taking the measurements is given as:

Kk = P̄kH
T
k (HkP̄kH

T
k +Rk)

−1 (2.13)

x̂k = x̄k +Kk(zk −Hkx̄k) (2.14)

P̂k = (I−KkHk)P̄k (2.15)

The matrix Kk is called the Kalman gain matrix and is used in the update step of both
the state and covariance (P) estimates. Note that except for the matrix inversion in
the calculation of the Kalman gain, the Kalman filter calculation is completely linear.
It is thus well suited for computer implementation.

The Kalman filter is also tightly connected to Bayesian tracking. To show this, we
apply similar kinematic and measurement models as for the Kalman filter:

xk+1 = f (xk,wk) (2.16)

zk = h(xk,vk) (2.17)

For simplicity, we have dropped the control input term, u. The goal is to recursively
estimate the states xk from the available measurements zk. We want to use all available
data up to time k, z1:k. In order to get the Bayesian solution, we thus need knowledge
of the conditional density p(x|z1:k). If the initial probability density function is known
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2.2. Kalman Filter

and we assume the kinematic model to be a Markov process of order one, p(x|z1:k)
(the prior) can be found recursively using the Chapman-Kolmogorov equation:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.18)

When the measurement in time step k becomes available, the prior probability density
function can be updated according to Baye’s rule:

p(xk|z1:k) =
p(zk|zk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)

(2.19)

By assuming the posterior density at every time step to be Gaussian, and thus
parameterized by the mean and covariance, it is possible to derive the Kalman filter.
If p(xk−1|zk−1) is Gaussian, p(xk−1|zk) is also Gaussian, provided that the kinematic
and measurement models are linear and that the noise terms are drawn from a known
Gaussian distribution. We may write:

xk = Fkxk−1 +wk−1 (2.20)

zk = Hkxk + vk (2.21)

The recursive Kalman filter algorithm can now be written as:

p(xk−1|z1:k−1) = N (xk−1;mk−1|k−1, Pk−1|k−1) (2.22)

p(xk|z1:k−1) = N (xk;mk|k−1, Pk|k−1) (2.23)

p(xk|z1:k) = N (xk;mk|k, Pk|k) (2.24)

where:

mk|k−1 = Fkmk−1|k−1 (2.25)

Pk|k−1 = Qk−1 + FkPk−1|k−1F
T
k (2.26)

mk|k = mk|k−1 +Kk(zk −Hkmk|k−1) (2.27)

Pk|k = Pk|k−1 −KkHkPk|k−1) (2.28)

Here, N (x;m,P ) means a Gaussian density with argument x, mean m and covariance
P . In addition:

Sk = HkPk|k−1|H
T
k +Rk (2.29)

Kk = Pk|k−1H
T
k S

−1
k (2.30)

These equations can be recognized as the Kalman filter. The Kalman filter is the
optimal solution provided that the restrictions on the system are valid (linearity and
Gaussianity) [2].
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Chapter 2. Kalman filter based segmentation

2.3 Extended Kalman Filter

As real-world systems seldom are purely linear, the Kalman filter can normally not be
applied directly. By using an extended Kalman filter (EKF), the system is linearized
around the current state estimate. This is achieved by calculating the Jacobian of f
and h:

Fk = Jxf(x,u,w) =
∂f(x,u,w)

∂x

∣∣∣∣
x̂k,uk,0

(2.31)

Hk = Jxh(x,v) =
∂h(x,v)

∂x

∣∣∣∣
x̄k,0

(2.32)

The corresponding Kalman filter equations become:

x̄k = f(x̂k−1,uk, 0) (2.33)

P̄k = FkP̂k−1F
T
k +Qk (2.34)

The posterior state estimate:

Kk = P̄kH
T
k (HkP̄kH

T
k +Rk)

−1 (2.35)

x̂k = x̄k +Kk(zk − h(x̄k, 0)) (2.36)

P̂k = (I−KkHk)P̄k (2.37)

Except for the Jacobian computation, this is very similar to the regular Kalman filter.

2.4 Information space

In the typical applications of the Kalman filter, for instance in control engineering, the
goal is often to estimate the states using as few measurements as possible. In case of
image segmentation, the number of measurements can be high and exceed the number
of states. In these cases, it can be advantageous to use a variant of the discrete Kalman
filter, called the information filter. This formulation has the advantage of avoiding
matrix inversion of the same size as the measurement covariance matrix. Instead,
matrices with the same dimensions as the length of the state vector is inverted. The
prediction step is unchanged from the discrete Kalman filter:

x̄k = Fkx̂k−1 +Bkuk (2.38)

P̄k = FkP̂k−1F
T
k +Qk (2.39)

The measurement update step is on the other hand different:

P̂−1
k = P̄−1

k +HT
kR

−1
k Hk (2.40)

P̂−1
k x̂k = P̄−1

k x̄k +HT
kR

−1
k zk (2.41)
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This requires an inversion step to get access to the updated state estimate and
covariance:

P̂k = (P̄−1
k +HT

kR
−1
k Hk)

−1 (2.42)

x̂k = P̂k(P̄
−1
k x̄k +HT

kR
−1
k zk) (2.43)

By expanding (2.43) and compare to the regular Kalman filter equations (2.14)(2.15),
it can be seen that this filter uses a different Kalman gain:

Kk = P̂kH
T
kR

−1
k (2.44)

Using this formulation, the measurements are all summed up into the information
matrix HTR−1H and the information vector HTR−1z.

If there are several independent scalar measurements at each time step, the
information filter approach can be made even more efficient. If the scalar
measurements are all independent, the measurement covariance matrix will be a
diagonal matrix and its inverse will just be another diagonal matrix with all elements
inverted:

R−1 =

⎡
⎢⎣

r−1
1 0 0

0
. . . 0

0 0 r−1
N

⎤
⎥⎦ (2.45)

Inserting this into the expressions for the information vector and matrix yields:

HTR−1z =
∑
i

hir
−1
i zi (2.46)

HTR−1H =
∑
i

hir
−1
i hT

i (2.47)

Thus, the large matrix inversion is reduced to scalar divisions.

2.5 Deformable models

So far, state space models and suitable estimation methods have been presented.
The remaining question is how to use this for image segmentation? Generally, image
segmentation aims to separate the input image or image sequence into different parts
or segments. In medical imaging, these segments typically corresponds to organs
or anatomic structures. Deformable models contain the prior knowledge about the
structure we are trying to segment out from the image. This can be size, shape,
orientation and sometimes deformation modes. This prior knowledge can be utilized
when conducting the segmentation.

We have applied so called explicit models. That means models where there is a
direct mapping between parametric and spatial coordinates, depending on the model
parameters. This is opposed to implicit models, such as level set models, where no
such mapping exists. Explicit models are generally less complex than implicit models.
In addition, it is often easier to add prior shape knowledge to explicit models. More
accurately, we have applied Non-uniform rational B-splines.
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2.6 Non-uniform rational B-splines

We have chosen to use Non-uniform rational B-splines (NURBS) as the foundation
for our models. NURBS have become the de facto industry standard [6] for curve
modeling. They have the advantage of being linear in their control points, and are
thus suitable for the type of segmentation scheme we are applying. In addition,
the possibility of adding weights to the various control points of the model makes
it possible to preserve shape characteristics, even during large deformations. A k’th
degree NURBS curve is defined by:

pl(u) =

∑n
i=0 Ni,k(u)wiqi∑n
i=0 Ni,k(u)wi

, ulow ≤ u ≤ uhigh (2.48)

Ni,k(u) are the k’th-degree B-spline basis functions. qi are the spline control points
and wi are the weights of the NURBS curve. The parametric coordinate u is bounded
by the constants ulow and uhigh. We denote points on the NURBS curve as pl(u).
The rational basis functions are then written as:

bi,k(u) =
Ni,k(u)wi∑n
j=0 Nj,k(u)wj

, ulow ≤ u ≤ uhigh (2.49)

which allows us to write:

pl(u) =
n∑

i=0

bi,k(u)qi, ulow ≤ u ≤ uhigh (2.50)

The basis functions are defined on the knot vector:

U = ulow, . . . , ulow, uk+1, . . . , um−k−1, uhigh, . . . , uhigh (2.51)

By letting the normal displacements of the NURBS control vertices be local states,
xl, in the system description, local deformations can be estimated. A control point is
then written as:

qi = q̄i + xl,ini (2.52)

where ni is the normal displacement vector for the control vertex and q̄i is the
mean/initial position of the control vertex. In some cases, it can be advantageous
to let control points be fixed to their mean/initial position. By splitting the control
points into sets of movable (M) and static (S) points, we can write:

pl(u) =
∑
i=M

bi,k(u)(q0,i + xl,ini) +
∑
i=S

bi,k(u)q0,i (2.53)

pl(u) = Tl(xl, u)

where we have introduced the term local deformation model, Tl, which relates points
on the NURBS curve with the local states, xl.

Note that the points on the NURBS curve are defined by the parametric coordinate
u. In order to draw a NURBS curve, a vector u of parametric coordinate values
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2.7. Kinematic model

must be decided for calculating the set of points composing the curve. The u vector
is commonly defined to be uniformly distributed between u = 0 and u = 1. To
improve readability, we will omit the parametric u coordinate from the equations in
the following descriptions.

In order to orient and scale the NURBS curve into its final position, a similarity
transform is applied to the pl points. The similarity transform applies regular
geometric transforms (translation, rotation and scale) [7]. During initalization, the
transform parameters are found manually. Transform paramters can also be defined
as dynamic and included as global states, xg, in the system equations. The total
state vector then becomes x = xl + xg. The similarity transform defines the global
deformation model, Tg:

p = Tg(pl,xg) (2.54)

2.7 Kinematic model

The Kalman filter approach allows for complex kinematic models. If the motion of
the structure of interest was strictly limited or predictable, this could be reflected
in the motion model. Making assumptions about the movements of anatomic
structures/organs can be dangerous when pathology is encountered. In our work we
have thus chosen to use the motion model:

xk+1 − x0 = A1(xk − x0) +A2(xk−1 − x0) +wk (2.55)

This implies the prediction step of the Kalman filter to be just:

x̄k+1 − x0 = A1(x̂k − x0) +A2(x̂k−1 − x0) (2.56)

If A2 is set to zero, the basic interpretation is that the model is assumed stationary.
If there was no measurement input, the model would then converge to its initial shape
at an exponential rate defined by A1. The A1 matrix can thus be said to define
the regularization of the model. By adjusting A2 or by adding more terms to the
kinematic model, it is possible to introduce damping and other more complex motion
modes.

2.8 Measurement inputs

In order to update the model, it is necessary to make measurements for use as
input to the Kalman filter. The segmentation scheme currently utilizes the following
measurements:

• Normal displacement edge detection

• Block matching

The measurement model in our system is nonlinear due to the local and global
deformation models. The edge measurements aim to measure the correct position
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the structure of interest was strictly limited or predictable, this could be reflected
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the regularization of the model. By adjusting A2 or by adding more terms to the
kinematic model, it is possible to introduce damping and other more complex motion
modes.

2.8 Measurement inputs
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input to the Kalman filter. The segmentation scheme currently utilizes the following
measurements:

• Normal displacement edge detection

• Block matching

The measurement model in our system is nonlinear due to the local and global
deformation models. The edge measurements aim to measure the correct position
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of points on the contour p. Measured values for p are related to the system states,
x, by Tl and Tg. The composite deformation model, T , includes both the local and
global deformation models. The local deformation Jacobian matrix is derived from
(2.53) and found by multiplying the displacement vectors with their respective basis
functions:

Jl = [bi0ni0 , bi1ni1 , . . .] (2.57)

This is precomputed and is computationally efficient.
The global Tg deformation model is directly applied to curve points, as in (2.54).

For curve normals, the curve normal transformation rule must be applied [8, 9]:

ng =

∣∣∣∣∂Tg(pl,xg)

∂pl

∣∣∣∣
(
∂Tg(pl,xg)

∂pl

)−T

nl (2.58)

The overall Jacobian matrix is found using the chain-rule of multivariate calculus:

Jg =

[
∂Tg(pl,xg)

∂xg
,
∂Tg(pl,xg)

∂pl
Jl

]
(2.59)

The edge measurements are made using normal displacements. Np edge points are
distributed around the NURBS model. For each edge point, it is searched for an
intensity transition along a normal, n, to the NURBS curve. This search can be
performed in many ways, such as fitting a step function, finding the maximum intensity
gradient or detecting an intensity plateau. The edge detector variants are discussed
in Chapter 4. The distance from the edge point on the curve, p, to the measured
measured edge point, pobs, is called a normal displacement measurement z .

z = nT(pobs − p) (2.60)

A measure of edge confidence, r, is be found by taking the inverse of the intensity
difference across the edge transition. This is use to weight the influence of each
measurement. It is also possible to discard measurements that are too uncertain
or differ significantly from the neighboring edge detectors. By only using normal
displacements, the linearized measurement model for use in the Kalman filter becomes:

hT = nTJ (2.61)

The block matching measurement is very similar to the edge detection. Nt points
on the model are selected as start-out points for block matching. An offset normal
vector, o of adjustable length is applied to locate centers for the block matching
regions of interest. In frame k, a single kernel block is extracted around each center
point. In frame k+1 a kernel block of the same size is moved within a search window
centered around the model center point from the previous frame, and a sum of absolute
differences (SAD) fit to the previous frame is calculated. This defines the new kernel
center position for frame k+1.

Denoting the normalized absolute error as ε, the kernel size as l ·k, the coordinates
within the search window as (m,n) and the kernel frames at two consecutive time
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2.8. Measurement inputs

points as X and Y , the SAD fit can be described as:

εm,n =
l∑

i=1

k∑
j=1

|Xi,j − Yi+m,j+n| (2.62)

By finding the (m,n) coordinates giving the smallest ε, the vector b, pointing from
the kernel position in frame k to frame k+1 is found. The normal component of b
defines a normal displacement vector zb, and its length is used as a filter input in the
same manner as for edge detection. This is illustrated in Fig. 2.1.

ROI, time k

Search Region

Best match, time k+1

b

zb
o

Model

Figure 2.1: Illustration of block matching measurements used as input to the Kalman
filter.
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Chapter 2. Kalman filter based segmentation

2.9 Combining models

It is also possible to combine multiple NURBS models and similarity transforms.
By doing so, it is possible to develop complex models modeling multiple anatomical
structures at the same time. By building a hierarchy of similarity transforms, each
submodel may be defined to move (translate, scale, rotate) relative to the other
submodels. Such a solution has been used in Chapters 4, 6 and 7. These projects have
used four models and four similarity transforms. To keep the method descriptions at
a sensible complexity level, and thus ensure readability, some implementation details
of the combination process have been omitted in these manuscripts. In this section,
the combination process is explained in detail using a simple example setup with two
NURBS models (M1 and M2) and two similarity transforms (T1 and T2).

M1

T1
xT1=[Tx1, Ty1,

Rz1, S1]

T2
xT2=[S2, Rz2]

pl,M1

pT2

pl,M2

M2

Figure 2.2: Example transform hierarchy using multiple models and transforms.

The models and transforms are combined by traversing the transform hierarchy
in Fig.2.2 in a depth first manner. The composite state vector contains concatenated
state vectors from all the models and transforms. For each of the models, a state
vector containing normal displacements of the movable control points is defined. We
denote these state vectors as xM1 and xM2. For the similarity transforms, state vectors
containing the dynamic transform parameters are defined. We denote these vectors
as xT 1 and xT 2. In this particular example, we say that model M2 should be able to
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2.10. Implementation

scale (S) and rotate (Rz) relative to M1. Additionally, M1 and M2 can both translate
(Tx,Ty), rotate (Rz) and scale (S) together. In the example, we thus find:

xT 1 = [Tx1 Ty1 S1 Rz1]
T (2.63)

xT 2 = [S2 Rz2]
T (2.64)

By traversing the transform hierarchy depth first, the composite state vector becomes:

x = [xT
T 1 x

T
M1 x

T
T 2 x

T
M2]

T (2.65)

The measurement model will be different for the two models M1 and M2, as the
latter has been processed by both similarity transforms. The points on each model
prior to transformations (pl,M1 and pl,M2) are calculated as for the single model case,
see (2.53). Likewise, the local Jacobians (Jl,M1 and Jl,M2) are found by (2.57). The
overall Jacobian for model 1 becomes:

JM1 =

[
∂T1(pl,M1,xT 1)

∂xT 1
,
∂T1(pl,M1,xT 1)

∂pl,M1
Jl,M1,0,0

]
(2.66)

which is similar to what has been shown with one model and one transform, except
for the zero-padding in the parts of the Jacobian related to the states not affecting
M1.

For model 2, it becomes more complex as two transforms are nested. We introduce
the points pT 2 = T2(pl,M2,xT 2) which are the points on model 2 after T2 but before
T1. Using the chain rule again, the Jacobian can be written:

JM2 =

[
∂T1(pT 2,xT 1)

∂xT 1
,0,

∂T1(pT 2,xT 1)

∂pT 2

∂T2(pl,M2,xT 2)

∂xT 2
,

∂T1(pT 2,xT 1)

∂pT 2

∂T2(pl,M2xT 2)

∂pl,M2
Jl,M2

] (2.67)

When knowing the Jacobians of the two models, edge and block measurements
can be made. These measurements are assimilated to the information space for each
model. All the information from all models is joined and used in the update step of
the Kalman filter, using the composite state vector [10]. The same principles apply
for cases with more models and transforms.

2.10 Implementation

In the preceding sections we have described all the building blocks needed to use the
extended Kalman filter for image segmentation. The Kalman filter and the NURBS
deformable model scheme has been implemented in a C++ based Real Time Contour
tracking Library (RCTL), [1]. The model design has been conducted in Matlab
(v2008a, The MathWorks, Inc.). For the scan assistance project, the application
was implemented on a GE Vingmed E9 (GE Vingmed Ultrasound, Horten, Norway)
cardiac ultrasound scanner. For the other projects, the applications were implemented
using the WxWidgets framework [11].
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2.10 Implementation

In the preceding sections we have described all the building blocks needed to use the
extended Kalman filter for image segmentation. The Kalman filter and the NURBS
deformable model scheme has been implemented in a C++ based Real Time Contour
tracking Library (RCTL), [1]. The model design has been conducted in Matlab
(v2008a, The MathWorks, Inc.). For the scan assistance project, the application
was implemented on a GE Vingmed E9 (GE Vingmed Ultrasound, Horten, Norway)
cardiac ultrasound scanner. For the other projects, the applications were implemented
using the WxWidgets framework [11].
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2.11 Possible extensions

In this section some possible extensions to the current Kalman filter framework are
presented. These are topics which could be subjects for further work.

Kalman smoother

A regular Kalman filter utilizes all information up to the current time stamp, k.
Information about measurements from future time points is not used, even if such
data is available. In the real-time setting, future measurements are, of course, never
available. When working with post-processing algorithms, the whole measurement
sequence can be used. In these cases, the Kalman filter may be a suboptimal choice.
A Kalman smoother [3] does the state estimation based on all available measurements,
both before and after k. The Kalman smoother is combining the results from a forward
and backwards running Kalman filter [12], operating from k = 1, . . . , N . We may write:

x̂k|N = P̂k|N
(
P̂−1

k−x̂k− + P̂−1
k+x̂k+

)
(2.68)

P̂k|N =
(
P̂−1

k− + P̂−1
k+

)−1

(2.69)

where P̂−1
k−, x̂k− represents the backwards running estimate and P̂−1

k+, x̂k+ is the
forwards running filter. The backwards filter is initialized with infinite covariance at
the final time. The estimate for the final time is thus unchanged, while all earlier
estimates are updated with measurements from future time points. This scheme can
be utilized in post-processing schemes to improve the temporal regularization, which
in this case regularizes both forwards and backwards in time. By wrapping around
the data series, it can also be used to enforce a perfectly cyclic behavior.

Active shape models

Active shape models deal with models trained on a set of observations of the object of
interest. The point distribution models introduced by Cootes and Taylor [13] capture
the average shape and shape variations in a training set and use that knowledge
to parametrize a model, using principal component analysis (PCA). Each model
parameter thus represents an orthogonal deformation mode. This should be very
efficient. By extending this framework to include a global pose transform, the resulting
models are called Active Shape Models (ASM). Hanseg̊ard et al. [14] applied ASM
with the Kalman filter by using a different motion model:

xk+1 = A1(xk ++A2xk−1) +B0wk (2.70)

The purpose of this model is to use the matrices A1,A2 and B0 to adjust damping and
inertia of the model, in order to get consistent temporal behavior of the model. More
information about ASM and Kalman filter applications can be found in the literature
[13–15].
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2.11. Possible extensions

Alternative measurements

In principle, many of the terms in the cost functions of active contours/cost
minimization schemes could be applied as measurements to the Kalman filter.

Graph based edge detectors have been successfully applied with Kalman filters
[16]. In these cases, the set of edge detection normals are treated as a graph. The
optimum set of edge detection measurements for a given frame is given by a graph
shortest path problem, where the cost of a transition is defined by gradient and
smoothness operators. This opens up for a more robust way of identifying edges,
but adds complexity as the edge measurements in each frame becomes a separate
optimization problem.

Wavelet and phase based feature detection approaches have also been applied to
Kalman filter schemes, such as in [17]. Wavelet analysis takes a sequence of image
profiles and performs a wavelet decomposition. Then the profiles can be reconstructed
using only the scales which contribute the strongest to the edge profile. The edge
profiles are now denoised without extensive blurring. This is a favorable solution for
detecting ridge-like edge profiles. The computation time is limited mainly by how the
scales used for reconstruction are selected. Phase based approaches, such as in [18],
calculate the phase of an edge profile using quadrature filters, such as Gabor wavelets.
By investigating the output of these filters, the likely edge is found. In the Gabor
filter case, a positive edge will be identified as a zero crossing from the even filter and
a maximum in the odd filter.
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Chapter 3

Fast automated measurement
of mitral annulus excursion
using a pocket-sized
ultrasound system
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We present a fast automatic method for mitral annulus excursion
measurement using pocket-sized ultrasound (PSU). The motivation is to
provide PSU users with a rapid measurement of cardiac systolic function.
The algorithm combines low frame rate tolerance, computational efficiency
and automation in a novel way. The method uses a speckle tracking scheme,
initialized and constrained by a deformable model. A feasibility study using
30 apical four-chamber PSU recordings from an unselected patient population
revealed an error of (mean± SD) -1.80± 1.96mm (p < 0.001), when compared
to manual anatomic m-mode analysis using laptop scanner data. When only
septal side excursion was measured, the mean error was −0.27 ± 1.89mm
(p < 0.001). The accuracy is comparable to previously reported results using
semi-automatic methods and full-size scanners. The computation time of
3.7ms/frame on a laptop computer suggests a real-time implementation on a
PSU device is feasible.
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3.1. Introduction

3.1 Introduction

1The development of Hand-carried ultrasound (HCU) has branched in two directions
[1]. Whereas one direction aims to close the performance gap between HCU and full-
size scanners, the other direction heads towards miniaturization. Recently, several
commercial equipment manufacturers have launched pocket-sized ultrasound (PSU)
devices capable of echocardiography, such as Siemens/Acuson P10 and GE Healthcare
Vscan. The advent of truly pocket-sized equipment, opens up for new applications of
ultrasound.

Cardiac examination is one of the clinically interesting applications for portable
ultrasound, and this topic has already been investigated in several studies [1–6].
Atherton [2] stated that HCU is promising as a screening tool for asymptomatic
subjects, but that the specificity is high only for experienced sonographers. We believe
that due to the smaller size and lower cost, PSU units will more often be operated by
inexperienced users and would benefit from having applications actively aiding these
users in detecting heart disease. One way of doing this, could be to include automatic
or semi-automatic cardiac measurements.

Ejection fraction (EF) is the most commonly used measurement for global systolic
left ventricular function. Correct measurement of EF using 2D ultrasound is difficult
and requires good visibility of all segments of the left ventricle (LV). The mitral annulus
excursion (MAE) measurement requires good image quality only in the base and has
shown to correlate with EF [7–10].

Several recent papers [7, 8, 11, 12] address the topic of semi-automatic measurement
of MAE. Pocket-sized scanners typically have a much lower frame rate than regular
scanners, which is a challenge for speckle tracking approaches. One paper has
addressed low frame rate tracking [11], but no published algorithm has been shown
to combine computational efficiency with low frame rate tolerance. We propose a
novel, highly efficient, method for measurement of MAE on low frame rate (20Hz)
ultrasound data from a pocket-sized scanner, combining speckle tracking and model-
based segmentation of the left ventricle. The system is designed to be fully automatic
and capable of real-time operation on pocket-sized ultrasound scanners. In the
following we will present the method and provide results from a feasibility study.

3.2 Materials and Method

The algorithm has two main parts. The first part is the Kalman filter segmentation,
which uses a Kalman filter to fit a deformable model of the LV to the image data.
The second part is a speckle tracker, which is a variant of the commonly used
sum of absolute differences (SAD) speckle tracker, using correlation weighted spatial
averaging. The Kalman filter segmentation is used to initalize the speckle tracker, and
to prevent tracking drift. We are using a weighted averaging scheme combining the
SAD fit and the movement of the deformable model, to derive the new kernel points for

1The reference style in this manuscript has been modified from (name,year) to numbered references,
to comply with the rest of the thesis.
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Chapter 3. Automated mitral annulus excursion measurements

the speckle tracker. The system either loads cartesian data directly or beamspace data
from dicom files. In the latter case, an in-house scan conversion is used to generate
cartesian image data.

3.2.1 Kalman filter segmentation

The Kalman filter segmentation is founded on the work in [13, 14]. We have used non
uniform rational B-splines (NURBS) to create the deformable model. NURBS were
chosen due to their flexibility and versatility. Use of Kalman filter for 2D segmentation
using B-splines has been published in [15–19]. As system states the Kalman filter uses
pose parameters and normal displacements of the NURBS control points. The motion
model in the filter is simple, and the prediction is based on the previous step only.
Edge detection measurements, as well as block matching, are used as measurement
input to the Kalman filter. By assimilating the measurements into information space,
an efficient implementation is possible. A detailled description of the Kalman filter
segmentation scheme can be found in 3.5.

The result of the Kalman filter segmentation is an efficient and robust model of
the LV. By selecting model points in the basal region of the model, it is now possible
to approximate MAE using the model only. Initial tests proved this approach to
be inaccurate. Especially around end-diastole, the model was not able to accurately
track the movement of the atrioventricular (AV) plane when facing challenging image
quality. Our solution has been to use the Kalman filter model as initialization and drift
compensation for a regular speckle tracker. The purpose is to combine the accuracy
of speckle tracking with the robustness and low frame rate tolerance of the Kalman
filter.

3.2.2 Speckle Tracking

AV plane speckle tracking should be done around the hinge point for the mitral valve
leaflets. In practice, this region can be very blurred. When a clinician is selecting a
point for speckle tracking, he should select a bright speckle in an anatomically correct
position. It is challenging to automate this selection process. We have chosen to
first locate an assymetric region of interest (ROI) at the model corner points, and
then do a search for the brightest pixel within that ROI. Since we are using data
from both pocket-sized and laptop systems, two different setups are required. Values
for the laptop system are put in parentheses. The ROI size is 10x11mm (5x5mm)
and centered 1mm (1mm) left and 3mm (1.5mm) down from the septal corner point,
considering an apical 4 chamber view. On the lateral side, the ROI is centered 4mm
(2mm) to the right and 3mm (3mm) down from the corner point.

For simplicity, we will now only consider one point at the time. We denote the
detected initial tracking point, lateral or septal, as x0,S . The subscript S means
”Speckle”. We now search for the closest point on the deformable model and denote it
as p0,K . The subscript K means ”Kalman”. The vector from the point on the model
to the tracking point is denoted b. Using the parametric coordinate of p0,K and the
deformable model, we will always have knowledge about pi,K , where i means frame
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3.2. Materials and Method

number. See Fig. 3.1 for an illustration. We find the corresponding Kalman filter
based tracking point for all frames:

xi,K = pi,K + b (3.1)

n_ap

p_i,K

x_i,K

b

x_i,S

Figure 3.1: Figure illustrating the Kalman model mitral annulus (MA) points, pi,K

and the corresponding Kalman tracking points xi,K . xi,S denote the final speckle
tracking points. Also note the vector from the atrioventricular plane to the cardiac
apex, nap and the vector b from the model MA point to the model-based tracking
point.

In a 3x3mm (4x4mm) region around xi,S , Navg−1 surrounding points for averaging
are selected. The Navg points become the center points for the block matching kernels
in frame i. We have chosen to use 26 (36) points for averaging. Each kernel has a size
of 5x6mm (5x5mm). Search windows are 7x14mm (8x9mm). A SAD fit of the kernels
results inNavg displacement vectors. These are combined using the weighted average of
the Navg displacement vectors. The weights are calculated from the Pearsons sample
correlation coefficient between the kernel and the best fit for each of the averaging
points. This means that tracking points where there is high correlation between
the kernels in consecutive frames, get priority. Tracking points having a correlation
coefficient below a threshold, Tc = 0.4, are discarded. The average displacement vector
is denoted d̄d,i. The new position of the tracking points x′

i,S becomes
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Chapter 3. Automated mitral annulus excursion measurements

x′
i,S = xi−1,S + d̄d,i, i = {1, 2, . . .} (3.2)

In regular speckle tracking, the standard solution would be to set xi,S = x′
i,S, add

points for averaging and repeat the process. This would be sensitive to drift and is
likely to fail on low frame rate loops. We thus combine this result with the model from
the Kalman filter segmentation.

Three main criteria exist for this combination process:

• Speckle tracking results should be given priority as long as
∥∥∥xi,K − x′

i,S

∥∥∥ is small

or moderate.

• When
∥∥∥xi,K − x′

i,S

∥∥∥ is large, the Kalman filter derived points should rapidly pull

the speckle tracker towards the correct region.

• The combination should be a smooth process to avoid jumps and discontinuities
in the result.

The chosen solution is to use a weighted sum of xi,K and x′
i,S:

xi,S = a ∗ xi,K + (1− a) ∗ x′
i,S (3.3)

The weighting function a is chosen as an exponential function

a = min{exp(C ∗ (
∣∣∥∥xi,K − x′

i,S

∥∥− T
∣∣), 1} (3.4)

The constant C has been set to 650 and T is selected to be 0.010. The resulting
weighting function is displayed in Fig. 3.2. Using this setup, it can be seen that as long
as the difference between the Kalman filter and speckle tracker defined points is less
than 5mm, the process is controlled mainly by the speckle tracker. When approaching
a difference of 1cm, the weight is rapidly, but smoothly, shifted to the Kalman filter
based values. After 1cm, the new kernel positions are solely defined by the Kalman
filter segmentation.

The tracking process is repeated for all frames [i+ 1, i+ 2, . . .].

3.2.3 MAE value

The coordinates of the tracking points xi,S are used to find MAE. Using the deformable
model, a unity vector nap, pointing from the center of the AV plane to the cardiac
apex is calculated. Taking the inner product of this vector and the average position
of the two tracking points, yields a distance measure for the mitral annulus towards
the apex, yMAE :

yMAEi
=< x̄i,S,nap > (3.5)

Considering one heart cycle only, the mitral annlus excursion is found as, MAE =
max{yMAEi}−min{yMAEi}. Fig. 3.3 shows a flowchart providing an overview of the
overall tracking system.

47

Chapter 3. Automated mitral annulus excursion measurements

x′
i,S = xi−1,S + d̄d,i, i = {1, 2, . . .} (3.2)

In regular speckle tracking, the standard solution would be to set xi,S = x′
i,S, add

points for averaging and repeat the process. This would be sensitive to drift and is
likely to fail on low frame rate loops. We thus combine this result with the model from
the Kalman filter segmentation.

Three main criteria exist for this combination process:

• Speckle tracking results should be given priority as long as
∥∥∥xi,K − x′

i,S

∥∥∥ is small

or moderate.

• When
∥∥∥xi,K − x′

i,S

∥∥∥ is large, the Kalman filter derived points should rapidly pull

the speckle tracker towards the correct region.

• The combination should be a smooth process to avoid jumps and discontinuities
in the result.

The chosen solution is to use a weighted sum of xi,K and x′
i,S:

xi,S = a ∗ xi,K + (1− a) ∗ x′
i,S (3.3)

The weighting function a is chosen as an exponential function

a = min{exp(C ∗ (
∣∣∥∥xi,K − x′

i,S

∥∥− T
∣∣), 1} (3.4)

The constant C has been set to 650 and T is selected to be 0.010. The resulting
weighting function is displayed in Fig. 3.2. Using this setup, it can be seen that as long
as the difference between the Kalman filter and speckle tracker defined points is less
than 5mm, the process is controlled mainly by the speckle tracker. When approaching
a difference of 1cm, the weight is rapidly, but smoothly, shifted to the Kalman filter
based values. After 1cm, the new kernel positions are solely defined by the Kalman
filter segmentation.

The tracking process is repeated for all frames [i+ 1, i+ 2, . . .].

3.2.3 MAE value

The coordinates of the tracking points xi,S are used to find MAE. Using the deformable
model, a unity vector nap, pointing from the center of the AV plane to the cardiac
apex is calculated. Taking the inner product of this vector and the average position
of the two tracking points, yields a distance measure for the mitral annulus towards
the apex, yMAE :

yMAEi
=< x̄i,S,nap > (3.5)

Considering one heart cycle only, the mitral annlus excursion is found as, MAE =
max{yMAEi}−min{yMAEi}. Fig. 3.3 shows a flowchart providing an overview of the
overall tracking system.

47

Chapter 3. Automated mitral annulus excursion measurements

x′
i,S = xi−1,S + d̄d,i, i = {1, 2, . . .} (3.2)

In regular speckle tracking, the standard solution would be to set xi,S = x′
i,S, add

points for averaging and repeat the process. This would be sensitive to drift and is
likely to fail on low frame rate loops. We thus combine this result with the model from
the Kalman filter segmentation.

Three main criteria exist for this combination process:

• Speckle tracking results should be given priority as long as
∥∥∥xi,K − x′

i,S

∥∥∥ is small

or moderate.

• When
∥∥∥xi,K − x′

i,S

∥∥∥ is large, the Kalman filter derived points should rapidly pull

the speckle tracker towards the correct region.

• The combination should be a smooth process to avoid jumps and discontinuities
in the result.

The chosen solution is to use a weighted sum of xi,K and x′
i,S:

xi,S = a ∗ xi,K + (1− a) ∗ x′
i,S (3.3)

The weighting function a is chosen as an exponential function

a = min{exp(C ∗ (
∣∣∥∥xi,K − x′

i,S

∥∥− T
∣∣), 1} (3.4)

The constant C has been set to 650 and T is selected to be 0.010. The resulting
weighting function is displayed in Fig. 3.2. Using this setup, it can be seen that as long
as the difference between the Kalman filter and speckle tracker defined points is less
than 5mm, the process is controlled mainly by the speckle tracker. When approaching
a difference of 1cm, the weight is rapidly, but smoothly, shifted to the Kalman filter
based values. After 1cm, the new kernel positions are solely defined by the Kalman
filter segmentation.

The tracking process is repeated for all frames [i+ 1, i+ 2, . . .].

3.2.3 MAE value

The coordinates of the tracking points xi,S are used to find MAE. Using the deformable
model, a unity vector nap, pointing from the center of the AV plane to the cardiac
apex is calculated. Taking the inner product of this vector and the average position
of the two tracking points, yields a distance measure for the mitral annulus towards
the apex, yMAE :

yMAEi
=< x̄i,S,nap > (3.5)

Considering one heart cycle only, the mitral annlus excursion is found as, MAE =
max{yMAEi}−min{yMAEi}. Fig. 3.3 shows a flowchart providing an overview of the
overall tracking system.

47

Chapter 3. Automated mitral annulus excursion measurements

x′
i,S = xi−1,S + d̄d,i, i = {1, 2, . . .} (3.2)

In regular speckle tracking, the standard solution would be to set xi,S = x′
i,S, add

points for averaging and repeat the process. This would be sensitive to drift and is
likely to fail on low frame rate loops. We thus combine this result with the model from
the Kalman filter segmentation.

Three main criteria exist for this combination process:

• Speckle tracking results should be given priority as long as
∥∥∥xi,K − x′

i,S

∥∥∥ is small

or moderate.

• When
∥∥∥xi,K − x′

i,S

∥∥∥ is large, the Kalman filter derived points should rapidly pull

the speckle tracker towards the correct region.

• The combination should be a smooth process to avoid jumps and discontinuities
in the result.

The chosen solution is to use a weighted sum of xi,K and x′
i,S:

xi,S = a ∗ xi,K + (1− a) ∗ x′
i,S (3.3)

The weighting function a is chosen as an exponential function

a = min{exp(C ∗ (
∣∣∥∥xi,K − x′

i,S

∥∥− T
∣∣), 1} (3.4)

The constant C has been set to 650 and T is selected to be 0.010. The resulting
weighting function is displayed in Fig. 3.2. Using this setup, it can be seen that as long
as the difference between the Kalman filter and speckle tracker defined points is less
than 5mm, the process is controlled mainly by the speckle tracker. When approaching
a difference of 1cm, the weight is rapidly, but smoothly, shifted to the Kalman filter
based values. After 1cm, the new kernel positions are solely defined by the Kalman
filter segmentation.

The tracking process is repeated for all frames [i+ 1, i+ 2, . . .].

3.2.3 MAE value

The coordinates of the tracking points xi,S are used to find MAE. Using the deformable
model, a unity vector nap, pointing from the center of the AV plane to the cardiac
apex is calculated. Taking the inner product of this vector and the average position
of the two tracking points, yields a distance measure for the mitral annulus towards
the apex, yMAE :

yMAEi
=< x̄i,S,nap > (3.5)

Considering one heart cycle only, the mitral annlus excursion is found as, MAE =
max{yMAEi}−min{yMAEi}. Fig. 3.3 shows a flowchart providing an overview of the
overall tracking system.

47



3.2. Materials and Method

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Weighting coefficient a

Distance between RCTL point and Speckle Tracking point [cm]

V
al

ue
 [0

-1
]

Figure 3.2: Weighting function for combining speckle tracking and Kalman filter
results. As long as the difference between the Kalman based tracking point xi,K

and the speckle tracking point xi,S is less than 5mm, the position of the next tracking
kernel is mainly based on the speckle tracking. If the difference is more than 1cm, the
parametric model is used to position the new kernel.

3.2.4 Manual corrections

Although the algorithm is designed for automatic operation, some optional manual
interaction is supported. This covers manual re-initialization of the tracking points
and model position. In addition, the lateral tracking point can be disabled, which can
be relevant in a few hard-to-image patients. We will present both fully automatic and
semi-automatic results.

3.2.5 Acquisition of data

The algorithm was tuned using recordings from a pocket-sized ultrasound (PSU)
scanner (Vscan, GE Vingmed Ultrasound, Horten, Norway) and a commercially
available high-end scanner (Vivid 7, GE Vingmed Ultrasound, Horten, Norway). Test
data was acquired from 30 patients (age 72.8± 10.8 years; 60% men), who previously
either had suffered a myocardial infarction, had known systolic heart failure or known
arterial hypertension. An ethical committee aproval was obtained, and informed
consent for the study was obtained from all human subjects per the WORLD Medical
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Figure 3.3: Flowchart illustrating the main components of the mitral annulus excursion
measurement system. A parametric model is fitted to the image data using a Kalman
filter. Upon initialization of the speckle tracker, the model is used to calculate initial
tracking points and a vector, b, pointing from the model to these initial tracking
points. After initialization, the speckle tracker and Kalman filter is run in parallel.
For each frame, the vector b is used to calculate new tracking kernel points based
on the movement of the deformable model, xi,K . These results are combined with
the sum of absolute differences (SAD) fit from the speckle tracker, x′

i,S, yielding the
corrected tracking points xi,S . These points are used for calculation of mitral annulus
excursion (MAE), as well as for new speckle tracker kernel points in the next frame.

Association Declaration of Helsinki: Ethical principles for medical research involving
human subjects. A cardiologist collected the data from the apical four-chamber view
using a commercially available laptop scanner (Vivid i, GE Vingmed Ultrasound,
Horten, Norway) and a PSU system (Vscan, GE Vingmed Ultrasound, Horten,
Norway). Following American Society of Echocardiography (ASE) nomenclature [20]
the laptop scanner is in the following denoted as the hand-carried ultrasound (HCU)
device, even if the image quality and user interface of this particular HCU device is
close to that of a full size scanner.

3.2.6 Analysis

The cardiologist measured MAE on the HCU data using anatomic m-mode in the
EchoPac software package (GE Vingmed Ultrasound, Horten, Norway). Both the
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excursion (MAE), as well as for new speckle tracker kernel points in the next frame.
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3.3. Results

septal and lateral sides were measured. One HCU recording was considered unsuitable
for speckle tracking and excluded from the analysis. The algorithm was thus tested
on 30 patients from the PSU device and 29 patients from the HCU system.

The algorithm was tested offline on a standard laptop computer. The fully
automatic solution was tested by running the algorithm using a batch script. One
complete cardiac cycle must be analyzed to calculate MAE. In addition, the Kalman
filter must have converged before initializing the speckle tracking points. This normally
occurs within the first 10 frames. For convenience, each recording was run for two
complete cycles. At the end of the second cycle, the MAE value was automatically
stored together with an image and movie of the tracking. We tested both to use the
septal point separately and to use the average of the septal and lateral points for
calculating the MAE value. The analysis was run using both PSU and HCU data.

Semi-automatic operation was tested by letting a second cardiologist, blinded
for the reference measurements, operate the algorithm while allowing for manual
corrections. Semi-automatic operation using the septal point only was not tested.
But as the clinician had the option of manually turning off the lateral point, some
of the reported semi-automatic MAE values were in reality based on medial tracking
only. In these cases we chose not to adjust the reference value accordingly. This has
the consequence that in cases where the semi-automatically reported MAE value in
reality was based on the septal excursion only, the reference value was still defined as
the average of the lateral and septal anatomic m-mode measurements. The cardiologist
noted what changes he did and rated the image quality as good or poor. The image
quality was rated good in 19 (61.3%) cases using PSU and in 20 (69.0%) cases using
HCU.

After testing for normality, the automatic results and the anatomic m-mode
references were compared using paired t-test and Pearson’s correlation coefficient.
Bland-Altman plots and scatter plots of the results were produced. The mean and
maximum absolute errors were calculated. The null hypothesis was that there was
no difference between the automatic method and the manual m-mode reference. To
assess the value of user interaction, the results from the semi-automatic analysis were
also analyzed.

3.3 Results

Two examples of excursion measurements, one from the PSU and one from the HCU
system, are shown in Fig. 3.4 and Fig. 3.5.

The results from the automatic and semi-automatic analysis are presented in Table
3.3. Figures 3.6 and 3.7 present scatter plots for the PSU device using respectively both
points and the septal point only. Bland-Altman plots are provided in Figures 3.8 and
3.9. For the HCU device, scatter plots are found in Figures 3.10 and 3.11, while Bland-
Altman plots are found in Figures 3.12 and 3.13. For the semi-automatic analysis
using PSU data, the cardiologist let the algorithm process 15 of the 30 recordings fully
automatic. For the HCU data, only 5 of the 29 were processed fully automatic. The
manual corrections are summarized in Table 3.3.
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Chapter 3. Automated mitral annulus excursion measurements

Figure 3.4: Example segmentation from a pocket-sized ultrasound recording. The
circles in the basal region of the model correspond to pi,K and the ones in the
myocardium corresponds to xi,S .
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3.4. Discussion

Figure 3.5: Example segmentation from a hand-carried ultrasound recording (same
patient as in Fig. 4). The circles in the basal region of the model correspond to pi,K

and the ones in the myocardium corresponds to xi,S .

The Kalman tracking used on average 2.5ms/frame and the speckle tracking
1.2ms/frame on a regular laptop computer (1.17GHz Dual Core, 2GB ram). The
frame rate for the PSU data was on average 20 frames per second and 55 frames per
second for the HCU data.

3.4 Discussion

The results from the analysis of PSU data suggest that fully automatic assessment
of MAE using a pocket-sized ultrasound scanner is feasible. The lateral tracking is
most challenging. When the average of the septal and lateral excursions is used to
calculate MAE, the lateral point introduces a negative bias of 1.8mm. By tracking the
septal point only, the negative bias is reduced to 0.27mm and is no longer statistically
significant. This is similar to the result in Hayashi et al. [21], who reported a
statistically significant difference of (mean ± SD) 1.94 ± 3.96mm between anatomic
m-mode measurements and speckle tracking on the lateral side. They did not get
significant bias on the septal side. We found the 95% confidence interval of the error
to be -2.53 to -1.07mm when using both points and a narrower -0.97 to 0.44mm when
only using the septal point. The maximum absolute error was reduced from 5.5 to
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Table 3.1: Table summarizing the mitral annulus excursion measurement results using
pocket-sized ultrasound (PSU) and hand-carried ultrasound (HCU) data. Both fully
automatic and semi-automatic results are presented. In case of automatic analysis,
the results when only using septal measurements are also provided. The results are
presented as maximum absolute error, mean absolute error, paired t-test results (mean
± SD), Peearsons correlation coefficient and 95% mean confidence interval. All values,
except the correlation coefficient, are measured in millimetres.

Method Max
Abs.
Error
[mm]

Mean
Abs.
Error
[mm]

Paired
t-test
(mean±SD)
[mm]

Pearsons r 95% Mean
Confidence
Interval.
[mm]

PSU 5.5 2.2 −1.80 ± 1.96
(p < 0.001)

0.62
(p < 0.001)

[−2.53,−1.07]

PSU(Septal) 3.0 1.6 −0.27 ± 1.89
(p = 0.446)

0.61
(p < 0.001)

[−0.97, 0.44]

HCU 5.5 2.1 −1.17 ± 2.32
(p = 0.010)

0.61
(p < 0.001)

[−2.03,−0.30]

HCU(Septal) 4.0 1.4 −0.13 ± 1.78
(p = 0.684)

0.69
(p < 0.001)

[−0.80, 0.53]

PSU(Semi-aut.) 4.5 2.0 −1.57 ± 1.72
(p < 0.001)

0.69
(p < 0.001)

[−2.21,−0.92]

HCU(Semi-aut.) 4.0 1.8 −1.40 ± 1.69
(p < 0.001)

0.64
(p < 0.001)

[−2.04,−0.75]

Table 3.2: Table listing the manual corrections performed during semi-automatic
analysis using the 30 pocket-sized ultrasound (PSU) recordings and the 29 hand-
carried ultrasound (HCU) recordings. The values are presented as number of cases
and percentage.

PSU HCU

Uncorrected [Cases (%)] 15 (50%) 5 (17%)

Lateral point disabled [Cases (%)] 7 (23%) 7 (24%)
Lateral point adjusted [Cases (%)] 4 (13%) 10 (34%)
Septal point adjusted [Cases (%)] 8 (27%) 12 (41%)

Model adjusted vertically [Cases (%)] 3 (10%) 6 (21%)
Model adjusted horizontally [Cases (%)] 3 (10%) 4 (14%)
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HCU 5.5 2.1 −1.17 ± 2.32
(p = 0.010)

0.61
(p < 0.001)

[−2.03,−0.30]

HCU(Septal) 4.0 1.4 −0.13 ± 1.78
(p = 0.684)

0.69
(p < 0.001)

[−0.80, 0.53]

PSU(Semi-aut.) 4.5 2.0 −1.57 ± 1.72
(p < 0.001)

0.69
(p < 0.001)

[−2.21,−0.92]

HCU(Semi-aut.) 4.0 1.8 −1.40 ± 1.69
(p < 0.001)

0.64
(p < 0.001)

[−2.04,−0.75]

Table 3.2: Table listing the manual corrections performed during semi-automatic
analysis using the 30 pocket-sized ultrasound (PSU) recordings and the 29 hand-
carried ultrasound (HCU) recordings. The values are presented as number of cases
and percentage.

PSU HCU

Uncorrected [Cases (%)] 15 (50%) 5 (17%)

Lateral point disabled [Cases (%)] 7 (23%) 7 (24%)
Lateral point adjusted [Cases (%)] 4 (13%) 10 (34%)
Septal point adjusted [Cases (%)] 8 (27%) 12 (41%)

Model adjusted vertically [Cases (%)] 3 (10%) 6 (21%)
Model adjusted horizontally [Cases (%)] 3 (10%) 4 (14%)
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Figure 3.6: Scatter plot with the pocket-sized ultrasound (PSU) results along the
vertical axis and the m-mode reference values along the horizontal axis. The solid line
is the reference unity line (y = x). The dashed line represents the unity line corrected
for the negative bias of 1.8mm (y = x - 1.8).

3mm when only the septal point was used. The poor lateral tracking is probably
caused by inferior image quality on the lateral side, which often suffers from dropouts
and out-of-plane motion.

Judging from the results, the algorithm performance seems less sensitive to frame
rate. By using HCU data the overall results did improve, but the differences were
almost negligble. We had expected a larger improvement for the HCU device. Several
of the HCU images suffered from very high gain in the base. This caused saturation
and poor visibility of the speckle pattern. Unfortunately, the saturation was also
present in the raw data, so we could not resolve the problem offline. This may have
influenced the tracking performance when the algorithm was used with HCU data.

When the algorithm was operated semi-automatically, the operator frequently
corrected both the model and tracking point initialization. Only 50% of the PSU
recordings and 17% of the HCU recordings were processed without interaction. The
most frequent corrections for the PSU data were disabling the lateral point (23%)
and correction of the septal point (24%). For the HCU data, both the lateral and
septal points were frequently adjusted. The lateral point was disabled in 24% of the
cases. In case of HCU data, the frequent repositioning of the tracking points can be
partly explained by the gain problems in the base, as the clinician was instructed to
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3mm when only the septal point was used. The poor lateral tracking is probably
caused by inferior image quality on the lateral side, which often suffers from dropouts
and out-of-plane motion.

Judging from the results, the algorithm performance seems less sensitive to frame
rate. By using HCU data the overall results did improve, but the differences were
almost negligble. We had expected a larger improvement for the HCU device. Several
of the HCU images suffered from very high gain in the base. This caused saturation
and poor visibility of the speckle pattern. Unfortunately, the saturation was also
present in the raw data, so we could not resolve the problem offline. This may have
influenced the tracking performance when the algorithm was used with HCU data.

When the algorithm was operated semi-automatically, the operator frequently
corrected both the model and tracking point initialization. Only 50% of the PSU
recordings and 17% of the HCU recordings were processed without interaction. The
most frequent corrections for the PSU data were disabling the lateral point (23%)
and correction of the septal point (24%). For the HCU data, both the lateral and
septal points were frequently adjusted. The lateral point was disabled in 24% of the
cases. In case of HCU data, the frequent repositioning of the tracking points can be
partly explained by the gain problems in the base, as the clinician was instructed to
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3mm when only the septal point was used. The poor lateral tracking is probably
caused by inferior image quality on the lateral side, which often suffers from dropouts
and out-of-plane motion.

Judging from the results, the algorithm performance seems less sensitive to frame
rate. By using HCU data the overall results did improve, but the differences were
almost negligble. We had expected a larger improvement for the HCU device. Several
of the HCU images suffered from very high gain in the base. This caused saturation
and poor visibility of the speckle pattern. Unfortunately, the saturation was also
present in the raw data, so we could not resolve the problem offline. This may have
influenced the tracking performance when the algorithm was used with HCU data.

When the algorithm was operated semi-automatically, the operator frequently
corrected both the model and tracking point initialization. Only 50% of the PSU
recordings and 17% of the HCU recordings were processed without interaction. The
most frequent corrections for the PSU data were disabling the lateral point (23%)
and correction of the septal point (24%). For the HCU data, both the lateral and
septal points were frequently adjusted. The lateral point was disabled in 24% of the
cases. In case of HCU data, the frequent repositioning of the tracking points can be
partly explained by the gain problems in the base, as the clinician was instructed to
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3mm when only the septal point was used. The poor lateral tracking is probably
caused by inferior image quality on the lateral side, which often suffers from dropouts
and out-of-plane motion.

Judging from the results, the algorithm performance seems less sensitive to frame
rate. By using HCU data the overall results did improve, but the differences were
almost negligble. We had expected a larger improvement for the HCU device. Several
of the HCU images suffered from very high gain in the base. This caused saturation
and poor visibility of the speckle pattern. Unfortunately, the saturation was also
present in the raw data, so we could not resolve the problem offline. This may have
influenced the tracking performance when the algorithm was used with HCU data.

When the algorithm was operated semi-automatically, the operator frequently
corrected both the model and tracking point initialization. Only 50% of the PSU
recordings and 17% of the HCU recordings were processed without interaction. The
most frequent corrections for the PSU data were disabling the lateral point (23%)
and correction of the septal point (24%). For the HCU data, both the lateral and
septal points were frequently adjusted. The lateral point was disabled in 24% of the
cases. In case of HCU data, the frequent repositioning of the tracking points can be
partly explained by the gain problems in the base, as the clinician was instructed to
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M-mode reference, septal side only [mm]
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Figure 3.7: Scatter plot with the pocket-sized ultrasound (PSU) results, using only
the septal value, along the vertical axis and the septal m-mode reference values along
the horizontal axis. The solid line is the reference unity line (y = x).

move tracking points away from saturated regions. The correction process was very
straightforward, only using two mouse clicks. It may be that the clinician did more
of an optimization than a correction of the tracking points. This is supported by
the limited gain from the user interaction. By introducing manual interaction, the
maximum error was reduced from 5.5mm to 4.5mm for the PSU device and from 5.5
to 4mm for the HCU device. We also registered a drop in the mean absolute error
(0.2mm for PSU and 0.3mm for HCU data) and the standard deviation of the error.
It seems that the main effect of manual interaction is reduction of outliers. It is
questionable whether these minor improvements can justify manual interaction when
implemented on a PSU device.

The correlation coefficients range from r = 0.61 to r = 0.69 and are statistically
significant. Hayashi et al. [21] reported a r2 = 0.55(r = 0.74) correlation between
anatomic m-mode and speckle tracking for the septal side and a non-significant value
for the lateral side. This is comparable to our results. We believe that the correlation
coefficients would benefit from having data with a wider range in the excursion values.
Our set has a value range from 6 to 14mm. Eto et al. [12] presented values ranging
from 1.9 to 24.6mm and achieved a correlation of r = 0.86 when comparing their
semi-automatic speckle tracking approach with manual atrioventricular plane tracing
in 3D echo. They also reported a difference of (mean ± SD) 2.5 ± 1.8mm compared
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move tracking points away from saturated regions. The correction process was very
straightforward, only using two mouse clicks. It may be that the clinician did more
of an optimization than a correction of the tracking points. This is supported by
the limited gain from the user interaction. By introducing manual interaction, the
maximum error was reduced from 5.5mm to 4.5mm for the PSU device and from 5.5
to 4mm for the HCU device. We also registered a drop in the mean absolute error
(0.2mm for PSU and 0.3mm for HCU data) and the standard deviation of the error.
It seems that the main effect of manual interaction is reduction of outliers. It is
questionable whether these minor improvements can justify manual interaction when
implemented on a PSU device.

The correlation coefficients range from r = 0.61 to r = 0.69 and are statistically
significant. Hayashi et al. [21] reported a r2 = 0.55(r = 0.74) correlation between
anatomic m-mode and speckle tracking for the septal side and a non-significant value
for the lateral side. This is comparable to our results. We believe that the correlation
coefficients would benefit from having data with a wider range in the excursion values.
Our set has a value range from 6 to 14mm. Eto et al. [12] presented values ranging
from 1.9 to 24.6mm and achieved a correlation of r = 0.86 when comparing their
semi-automatic speckle tracking approach with manual atrioventricular plane tracing
in 3D echo. They also reported a difference of (mean ± SD) 2.5 ± 1.8mm compared
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move tracking points away from saturated regions. The correction process was very
straightforward, only using two mouse clicks. It may be that the clinician did more
of an optimization than a correction of the tracking points. This is supported by
the limited gain from the user interaction. By introducing manual interaction, the
maximum error was reduced from 5.5mm to 4.5mm for the PSU device and from 5.5
to 4mm for the HCU device. We also registered a drop in the mean absolute error
(0.2mm for PSU and 0.3mm for HCU data) and the standard deviation of the error.
It seems that the main effect of manual interaction is reduction of outliers. It is
questionable whether these minor improvements can justify manual interaction when
implemented on a PSU device.

The correlation coefficients range from r = 0.61 to r = 0.69 and are statistically
significant. Hayashi et al. [21] reported a r2 = 0.55(r = 0.74) correlation between
anatomic m-mode and speckle tracking for the septal side and a non-significant value
for the lateral side. This is comparable to our results. We believe that the correlation
coefficients would benefit from having data with a wider range in the excursion values.
Our set has a value range from 6 to 14mm. Eto et al. [12] presented values ranging
from 1.9 to 24.6mm and achieved a correlation of r = 0.86 when comparing their
semi-automatic speckle tracking approach with manual atrioventricular plane tracing
in 3D echo. They also reported a difference of (mean ± SD) 2.5 ± 1.8mm compared
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move tracking points away from saturated regions. The correction process was very
straightforward, only using two mouse clicks. It may be that the clinician did more
of an optimization than a correction of the tracking points. This is supported by
the limited gain from the user interaction. By introducing manual interaction, the
maximum error was reduced from 5.5mm to 4.5mm for the PSU device and from 5.5
to 4mm for the HCU device. We also registered a drop in the mean absolute error
(0.2mm for PSU and 0.3mm for HCU data) and the standard deviation of the error.
It seems that the main effect of manual interaction is reduction of outliers. It is
questionable whether these minor improvements can justify manual interaction when
implemented on a PSU device.

The correlation coefficients range from r = 0.61 to r = 0.69 and are statistically
significant. Hayashi et al. [21] reported a r2 = 0.55(r = 0.74) correlation between
anatomic m-mode and speckle tracking for the septal side and a non-significant value
for the lateral side. This is comparable to our results. We believe that the correlation
coefficients would benefit from having data with a wider range in the excursion values.
Our set has a value range from 6 to 14mm. Eto et al. [12] presented values ranging
from 1.9 to 24.6mm and achieved a correlation of r = 0.86 when comparing their
semi-automatic speckle tracking approach with manual atrioventricular plane tracing
in 3D echo. They also reported a difference of (mean ± SD) 2.5 ± 1.8mm compared
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Figure 3.8: Bland-Altman plot of the measurement difference betweeen the automatic
algorithm using pocket-sized ultrasound (PSU) and manual m-mode measurement on
hand-carried ultrasound data (HCU). The dashed line represents the bias in the data,
while the dash-dotted lines represent the 95% limits of agreement.

to the manual tracing.

The standard deviation of the error is relatively high, which can also be seen
from the Bland-Altman plots. This can have several reasons. The size of the dataset
is limited, and the patients were not from a healthy population. All patients had a
previous history of myocardial infarction, known hypertension or systolic heart failure.
The image quality was on the low side of the quality scale. The cardiologist judged
38.7% of the PSU recordings and 31.0% of the HCU recordings as having ”Poor” image
quality. As the patients were mostly more than 60 years of age, use of a conversion
factor of 5 between MAE and EF [22] translates the standard deviation of the error
to 9.8% for automatic PSU analysis and 11.6% for automatic HCU analysis, in terms
of EF. By only using the septal point for MAE calculation, the numbers are 9.5%
(PSU) and 8.9% (HCU). The review paper in [23] reported interobserver variabilities
of EF using Simpsons rule, corresponding to standard deviations of the difference
between the observers, ranging from 4.1% (a study on echogenic patients) to 10.7%.
For intraobserver variability, the range was 3.1% to 6.6%. The algorithm does not
perform much worse as an EF estimator than these reported numbers, even if these
are studies with full-size scanners.

Nevo eta l. [11] presented a semi-automatic method for MAE measurement
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The image quality was on the low side of the quality scale. The cardiologist judged
38.7% of the PSU recordings and 31.0% of the HCU recordings as having ”Poor” image
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to 9.8% for automatic PSU analysis and 11.6% for automatic HCU analysis, in terms
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previous history of myocardial infarction, known hypertension or systolic heart failure.
The image quality was on the low side of the quality scale. The cardiologist judged
38.7% of the PSU recordings and 31.0% of the HCU recordings as having ”Poor” image
quality. As the patients were mostly more than 60 years of age, use of a conversion
factor of 5 between MAE and EF [22] translates the standard deviation of the error
to 9.8% for automatic PSU analysis and 11.6% for automatic HCU analysis, in terms
of EF. By only using the septal point for MAE calculation, the numbers are 9.5%
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between the observers, ranging from 4.1% (a study on echogenic patients) to 10.7%.
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perform much worse as an EF estimator than these reported numbers, even if these
are studies with full-size scanners.
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to the manual tracing.

The standard deviation of the error is relatively high, which can also be seen
from the Bland-Altman plots. This can have several reasons. The size of the dataset
is limited, and the patients were not from a healthy population. All patients had a
previous history of myocardial infarction, known hypertension or systolic heart failure.
The image quality was on the low side of the quality scale. The cardiologist judged
38.7% of the PSU recordings and 31.0% of the HCU recordings as having ”Poor” image
quality. As the patients were mostly more than 60 years of age, use of a conversion
factor of 5 between MAE and EF [22] translates the standard deviation of the error
to 9.8% for automatic PSU analysis and 11.6% for automatic HCU analysis, in terms
of EF. By only using the septal point for MAE calculation, the numbers are 9.5%
(PSU) and 8.9% (HCU). The review paper in [23] reported interobserver variabilities
of EF using Simpsons rule, corresponding to standard deviations of the difference
between the observers, ranging from 4.1% (a study on echogenic patients) to 10.7%.
For intraobserver variability, the range was 3.1% to 6.6%. The algorithm does not
perform much worse as an EF estimator than these reported numbers, even if these
are studies with full-size scanners.
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Figure 3.9: Bland-Altman plot of the measurement difference betweeen the automatic
algorithm using only the septal point and pocket-sized ultrasound (PSU) and manual
m-mode measurement on hand-carried ultrasound data (HCU). The dashed line
represents the bias in the data, while the dash-dotted lines represent the 95% limits
of agreement.

using low frame rate (25Hz) images. The disadvantage of this solution is the
reported long computation time of (mean ± SD) 162.1 ±10.3 seconds. A pocket-
sized scanner operating at 20 frames per second has a 50ms per frame time limit for
real-time algorithm operation. The computation time of our algorithm of 3.7ms per
frame suggests that a real-time PSU implementation is feasible, provided that the
computational capacity of the PSU systems is approaching that of a regular laptop
computer. This will further speed up the exam and completely avoid the need for
post-processing.

3.4.1 Limitations and Future work

The goal of this work was to assess left ventricular systolic function by measurement
of MAE using a pocket-sized device. It was chosen to use manual anatomic m-mode
based MAE measurements as the reference. An alternative would be to use EF. For
instance did DeCara et al. [7] present a study based on Philips QLab where they
achieved a close correlation (r2 = 0.72) between semi-automatic MAE and biplane
EF, using multiple regression. A similar study, using Philips Qlab, was presented in
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Figure 3.9: Bland-Altman plot of the measurement difference betweeen the automatic
algorithm using only the septal point and pocket-sized ultrasound (PSU) and manual
m-mode measurement on hand-carried ultrasound data (HCU). The dashed line
represents the bias in the data, while the dash-dotted lines represent the 95% limits
of agreement.

using low frame rate (25Hz) images. The disadvantage of this solution is the
reported long computation time of (mean ± SD) 162.1 ±10.3 seconds. A pocket-
sized scanner operating at 20 frames per second has a 50ms per frame time limit for
real-time algorithm operation. The computation time of our algorithm of 3.7ms per
frame suggests that a real-time PSU implementation is feasible, provided that the
computational capacity of the PSU systems is approaching that of a regular laptop
computer. This will further speed up the exam and completely avoid the need for
post-processing.

3.4.1 Limitations and Future work

The goal of this work was to assess left ventricular systolic function by measurement
of MAE using a pocket-sized device. It was chosen to use manual anatomic m-mode
based MAE measurements as the reference. An alternative would be to use EF. For
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using low frame rate (25Hz) images. The disadvantage of this solution is the
reported long computation time of (mean ± SD) 162.1 ±10.3 seconds. A pocket-
sized scanner operating at 20 frames per second has a 50ms per frame time limit for
real-time algorithm operation. The computation time of our algorithm of 3.7ms per
frame suggests that a real-time PSU implementation is feasible, provided that the
computational capacity of the PSU systems is approaching that of a regular laptop
computer. This will further speed up the exam and completely avoid the need for
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m-mode measurement on hand-carried ultrasound data (HCU). The dashed line
represents the bias in the data, while the dash-dotted lines represent the 95% limits
of agreement.

using low frame rate (25Hz) images. The disadvantage of this solution is the
reported long computation time of (mean ± SD) 162.1 ±10.3 seconds. A pocket-
sized scanner operating at 20 frames per second has a 50ms per frame time limit for
real-time algorithm operation. The computation time of our algorithm of 3.7ms per
frame suggests that a real-time PSU implementation is feasible, provided that the
computational capacity of the PSU systems is approaching that of a regular laptop
computer. This will further speed up the exam and completely avoid the need for
post-processing.

3.4.1 Limitations and Future work

The goal of this work was to assess left ventricular systolic function by measurement
of MAE using a pocket-sized device. It was chosen to use manual anatomic m-mode
based MAE measurements as the reference. An alternative would be to use EF. For
instance did DeCara et al. [7] present a study based on Philips QLab where they
achieved a close correlation (r2 = 0.72) between semi-automatic MAE and biplane
EF, using multiple regression. A similar study, using Philips Qlab, was presented in
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Figure 3.10: Scatter plot with the hand-carried ultrasound (HCU) results along the
vertical axis and the m-mode reference values along the horizontal axis. The solid line
is the reference unity line (y = x). The dashed line represents the unity line corrected
for the negative bias of 1.17mm (y = x - 1.17).

[8]. Different regression formulas have also been presented in several other publications
[9, 12]. Unfortunately, it does not seem to be a general agreement on which regression
formula to use. In this work, it was thus chosen to use manual MAE directly as the
reference. This can be seen as a limitation, as many still consider EF to be the gold
standard when measuring cardiac systolic function.

MAE is often measured in several projections, and the MAE value is reported
as the average excursion. In this work, only the apical four-chamber view has been
used. Also, the best automatic results were achieved using the septal point only.
This solution is sensitive to local variability in the excursion of the mitral annlus, for
instance due to an infarction.

The tested HCU recordings suffered from gain and saturation issues. This may
have influenced the HCU results. For the PSU device, the spatial resolution may have
been limited by its output format, which was cartesian image of 240x320 pixels.

Our algorithm is intended to be operated also by less experienced users. In this
work, the recordings were made by a cardiologist. This is a limitation, as the image
quality is likely to be worse when the operator is a non-expert. The number of subjects
in the feasability study is also limited. A larger clinical validation study should be
conducted with data from a broader population and, preferably, include users with
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Figure 3.11: Scatter plot with the hand-carried ultrasound (HCU) results, using only
the septal value, along the vertical axis and the septal m-mode reference values along
the horizontal axis. The solid line is the reference unity line (y = x).

limited training.
Although our computation times suggest that a real-time implementation of the

method on a pocket-sized device is feasible, we have not been able to physically verify
this. A real-time implementation on a PSU device should be pursued.

In order to make the method more accurate, especially the lateral tracking scheme
should be refined. One way of doing this could be to improve the accuracy of the
model fit, for instance by developing new edge detectors and refining the parametric
left ventricle model. By putting more weight on the model motion than the block
matching, the lateral mitral annulus tracking could possibly be made more accurate.

3.5 Conclusions

We have presented a fully automatic algorithm for MAE measurement using low frame
rate apical four-chamber images from a pocket-sized ultrasound device. The algorithm
is highly efficient, and the measured computation times strongly suggest that real-time
operation is feasible. The accuracy of the algorithm should be suitable for successfully
separating poor ventricles from normal ones and is comparable to previously reported
numbers comparing anatomic m-mode and semi-automatic regular frame rate speckle
tracking. The MAE values are on average underestimated. This effect is reduced
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Figure 3.12: Bland-Altman plot of the measurement difference betweeen the automatic
algorithm and manual m-mode measurement. Both the automatic results and reference
measurements were made using hand-carried ultrasound data (HCU). The dashed line
represents the bias in the data, while the dash-dotted lines represent the 95% limits
of agreement.

by only using the septal point for MAE calculation. We believe that the presented
algorithm is a promising method for rapid assessment of systolic function using PSU
systems.
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Figure 3.13: Bland-Altman plot of the measurement difference betweeen the automatic
algorithm using only the septal point and manual m-mode measurement. Both
the automatic results and reference measurements were made using hand-carried
ultrasound data (HCU). The dashed line represents the bias in the data, while the
dash-dotted lines represent the 95% limits of agreement.
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3.5. Conclusions

Appendix: Technical notes - Model-based segmenta-
tion

This appendix covers the detailled description of the model-based segmentation
algorithm, using a Kalman filter.

Calculating model points. The parametric model used in this work is based on Non
Uniform Rational B-Splines (NURBS). This is a generalization of the commonly used
nonrational B-splines. A k’th degree NURBS curve is defined by:

pl(u) =

∑n
i=0 Ni,k(u)wiqi∑n
i=0 Ni,k(u)wi

, a ≤ u ≤ b (3.6)

Ni,k(u) are the k’th-degree B-spline basis functions. qi are the control points for
the spline. Lastly, wi are the weights of the NURBS curve. The constants a and b
are upper and lower bounds for the parametric coordinate, u. We denote points on
the NURBS curve as pl(u) for reasons which will become clear later. We define the
rational basis functions as:

bi,k(u) =
Ni,k(u)wi∑n
j=0 Nj,k(u)wj

, a ≤ u ≤ b (3.7)

which allows us to write:

pl(u) =
n∑

i=0

bi,k(u)qi, a ≤ u ≤ b (3.8)

The basis functions are defined on the knot vector:

U = a, . . . , a, uk+1, . . . , um−k−1, b, . . . , b (3.9)

We note that the NURBS curves are linear in their control points, which make
them well suited for parameter estimation. In this work, the knot vector has been
chosen such that a = 0, b = 1 and uk+1, . . . , um−k−1 are uniformly distributed. The
left ventricle model is designed in a custom made Matlab (v2008a, The MathWorks,
Inc.) environment, where it is possible to freely select control points, knots, weights
and parametric coordinates for edge and speckle tracking measurements. The weights
have been adjusted to preserve the corner between the AV plane and the LV walls.

System states. A Kalman filter requires the model or system to be described by
states. We choose to denote the normal displacement of the control vertices as the
local states, xl. The control point is written as:

qi = q̄i + xl,ini (3.10)

where ni is the normal displacement vector for the control vertex and q̄i is the mean
position of the control vertex. The pose parameters (translation, rotation and scale)
are used as global states, x̄g. Combining the local and global states results in one
state vector suitable for the Kalman filter framework, x = xl + xg. Control points in
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the base center should not be moved, as no significant shape alternations are expected
in this region. These points are thus not included in the state vector.

The relation between the system states and the points on the deformable model is
described by a local (Tl) and global transform (Tg). We denote the points on the final
contour as p. For simplicity, we write the points on the contour prior to application
of the global pose as pl. We define a vector u with length Nc where 0 ≤ ui ≤ 1. This
yields:

pl = [pl(u0), pl(u1), . . . , pl(uNc−1)] (3.11)

where pl(ui) is evaluated using equation 3.8 for each element in u. Equation 3.8
thus defines the local transformation Tl. pl is then transformed by the global pose
transform, Tg to get the correct position of the model.

p = Tg(pl,xg) (3.12)

The composite deformation model, T includes both the local and global transforms.
It is necessary to calculate the Jacobian of T . The local Jacobian matrix is found by
multiplying the displacement vectors with their respecitve basis functions:

Jl = [bi0ni0 , bi1ni1 , . . .] (3.13)

This can be precomputed, and thus eases the real-time operation.
The global Tg transform is directly applied to curve points, as in equation 3.12.

This is not the case with the curve normals, where the curve normal transformation
rule must be applied [13, 24]:

ng =

∣∣∣∣∂Tg(pl,xg)

∂pl

∣∣∣∣
(
∂Tg(pl,xg)

∂pl

)−T

nl (3.14)

The overall Jacobian matrix is derived applying the chain-rule of multivariate calculus:

Jg =

[
∂Tg(pl,xg)

∂xg
,
∂Tg(pl,xg)

∂pl
Jl

]
(3.15)

Prediction step. During the prediction step, the state estimates are predicted based
on the posterior estimates from last iteration. It is also possible to expand this model
to model motion. We use a bar above the variable to indicate the a priori value and
a hat for the posterior value.

x̄k+1 − x0 = A(x̂k − x0) (3.16)

Measurements. As measurement input to the Kalman filter, we have used simple
edge measurements and block matching. The edge measurements are made using
normal displacements. Np edge points are distributed around the NURBS model. For
each edge point, it is searched for an intensity transition along a normal, n, to the
NURBS curve in this point. We use a step detector based on minimization of the sum
of square errors (SSE) between a perfect step function and the sample vector taken
normal to the model. Weak edges are discarded using a thresholding of the intensity
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difference across the detected edge or the distance from the neigboring edge detector
results. The distance from the edge point to the measured measured edge point is called
a normal displacement measurement v . The inverse of the mean intensity difference
across the detected edge point, is used as a measure of edge confidence, r.

v = nT(pobs − p) (3.17)

This measurement must be projected to state space, in order to be useful for the state
update. The measurement model must be linear to fit in the Kalman filter framework.
This is done using the normal vector projection of the Jacobian.

hT = nTJ (3.18)

The normal displacement measurements are thus now related to the state vector
through hT. This implies a separate measurement vector, h for each normal
displacement measurement.

In addition to the edge measurements, block matching has been used as Kalman
filter input. Nt points on the NURBS model are selected as centres for the block
matching blocks. In frame k, a single kernel block is extracted around each center
point. In frame k+1 a kernel block of the same size is moved within a search window
centered around the model center point from the previous frame, and a SAD fit to the
previous frame is calculated, defining the new kernel center position for frame k+1.
The normal component of the vector from the kernel position in frame k to frame k+1
defines a normal displacement vector, and is used as a filter input in the same manner
as for edge detection. This use of block matching is not strictly necessary, but adds
to the robustness of the method.

Assimilation. Calculating the regular Kalman gain using the standard equations
will in this case be computationally intensive because there are many more
measurements than there are states. The measurements are thus instead assimilated
into information space. If the measurements can be considered uncorrelated, this
gives a very efficient processing, as the measurement covariance matrix, R becomes
diagonal:

HTR−1v =
∑
i

hir
−1
i vi (3.19)

HTR−1H =
∑
i

hir
−1
i hT

i (3.20)

This avoids inversion of matrices with dimension larger than the dimension of the state
vector.

Update. The Kalman gain, Kk, is given by

Kk = P̂kH
TR−1 (3.21)

where P means the error covariance matrix. The update step becomes:

x̂k = x̄k + P̂kH
TR−1vk (3.22)
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The updated error covariance matrix using information space becomes:

P̂−1
k = P̄−1

k +HTR−1H (3.23)

By applying equations 3.8, 3.12 and 3.10, it is now possible to calculate the model
points.
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Chapter 4

Automated Septum Thickness
Measurement - A Kalman
Filter Approach
Sten Roar Snare1, Ole Christian Mjølstad1,2, Fredrik Orderud3,
H̊avard Dalen4 and Hans Torp1

1 Dept. Circulation and Medical Imaging, NTNU
2 Dept. Cardiology, St. Olav Hospital, Trondheim, Norway
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4 Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway

Interventricular septum thickness in end-diastole (IVSd) is one of the key
parameters in cardiology. This paper presents a fast algorithm, suitable for
pocket-sized ultrasound devices, for measurement of IVSd using 2D B-mode
parasternal long axis images.
The algorithm is based on a deformable model of the septum and the mitral
valve. The model shape is estimated using an extended Kalman filter.
A feasibility study using 32 unselected recordings is presented. The recordings
originate from a database consisting of subjects from a normal healthy
population. Five patients with suspected hypertrophy were included in the
study. Reference B-mode measurements were made by two cardiologists.
A paired t-test revealed a non-significant mean difference, compared to the
B-mode reference, of (mean ± SD) 0.14mm± 1.36mm (p=0.532). Pearson’s
correlation coefficient was 0.79 (p < 0.001). The results are comparable to the
variability between the two cardiologists, which was found to be 1.29mm ±
1.23mm (p < 0.001). The results indicate that the method has potential as a
tool for rapid assessment of IVSd.

4.1 Introduction and Literature

With the advent of pocket-sized and low cost ultrasound devices, new and less
experienced user groups are expected. For the less experienced ultrasound user,
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4.2. Materials and Method

automation is likely to improve the robustness and repeatability of the clinical
measurements.

The interventricular septum wall thickness in end-diastole (IVSd) is a frequently
used measurement in echocardiography. In arterial hypertension, left ventricular
hypertrophy (LVH) is associated with increased risk of both cardiovascular morbidity
and mortality [1]. The American Society of Echocardiography [2] mentions the septal
and posterior wall thickness alone as a an easy way to detect LVH. The guidelines [2]
suggest a normal range for IVSd of 0.6-0.9cm for women and 0.6-1.0cm for men. A
septum is considered moderately abnormal when IVSd is measured between 1.3-1.5cm
for women and 1.4-1.6cm for men. Measurements above these values are considered
severely abnormal.

Current guidelines [2], recommend a parasternal long axis view in combination
with 2D B-mode or 2D targeted M-mode when measuring IVSd. The measurement
should be made at the level of the mitral valve leaflet tips. Targeted M-mode has
the advantage that it is easier to separate the septum from other structures such
as the moderator band, tricuspid apparatus or false tendons. On the other hand,
it can sometimes be difficult to place the M-mode cursor exactly perpendicular to
the septum, especially for untrained users. The image in 2D B-mode is visually more
intuitive than the M-mode, but the septal border can be blurred or completely missing
in single frames. On several pocket-sized devices, M-mode is not available, leaving 2D
B-mode as the only option.

This work aims to present a fast, automated lightweight system for IVSd
measurement, suitable for pocket-sized systems. Among the few publications on this
topic is a study by Moladoust et al. [3] that published a semi-automatic approach
using an adaptive thresholding algorithm. The motivation for automating the IVSd
measurement is to:

• Ease operation of pocket-sized systems, where manual image measurements are
unpractical

• Get more consistent results when the system is operated by less experienced
personnel

In this paper, the algorithm is first described in detail. Then, the results from a
feasibility study are presented and discussed.

4.2 Materials and Method

The proposed algorithm is based on contour tracking in 2D B-mode images using
coupled Non-Uniform Rational B-spline (NURBS) models and an extended Kalman
filter. The tracking scheme is based on the method proposed in [4]. Deformable model
segmentation using a Kalman filter framework has been previously published in [5–
8]. We take the approach one step further by combining several parametric NURBS
contours in a hierarchy. The algorithm enables the use of information from several
frames when doing septum segmentation, thus making the algorithm less sensitive to

72

4.2. Materials and Method

automation is likely to improve the robustness and repeatability of the clinical
measurements.

The interventricular septum wall thickness in end-diastole (IVSd) is a frequently
used measurement in echocardiography. In arterial hypertension, left ventricular
hypertrophy (LVH) is associated with increased risk of both cardiovascular morbidity
and mortality [1]. The American Society of Echocardiography [2] mentions the septal
and posterior wall thickness alone as a an easy way to detect LVH. The guidelines [2]
suggest a normal range for IVSd of 0.6-0.9cm for women and 0.6-1.0cm for men. A
septum is considered moderately abnormal when IVSd is measured between 1.3-1.5cm
for women and 1.4-1.6cm for men. Measurements above these values are considered
severely abnormal.

Current guidelines [2], recommend a parasternal long axis view in combination
with 2D B-mode or 2D targeted M-mode when measuring IVSd. The measurement
should be made at the level of the mitral valve leaflet tips. Targeted M-mode has
the advantage that it is easier to separate the septum from other structures such
as the moderator band, tricuspid apparatus or false tendons. On the other hand,
it can sometimes be difficult to place the M-mode cursor exactly perpendicular to
the septum, especially for untrained users. The image in 2D B-mode is visually more
intuitive than the M-mode, but the septal border can be blurred or completely missing
in single frames. On several pocket-sized devices, M-mode is not available, leaving 2D
B-mode as the only option.

This work aims to present a fast, automated lightweight system for IVSd
measurement, suitable for pocket-sized systems. Among the few publications on this
topic is a study by Moladoust et al. [3] that published a semi-automatic approach
using an adaptive thresholding algorithm. The motivation for automating the IVSd
measurement is to:

• Ease operation of pocket-sized systems, where manual image measurements are
unpractical

• Get more consistent results when the system is operated by less experienced
personnel

In this paper, the algorithm is first described in detail. Then, the results from a
feasibility study are presented and discussed.

4.2 Materials and Method

The proposed algorithm is based on contour tracking in 2D B-mode images using
coupled Non-Uniform Rational B-spline (NURBS) models and an extended Kalman
filter. The tracking scheme is based on the method proposed in [4]. Deformable model
segmentation using a Kalman filter framework has been previously published in [5–
8]. We take the approach one step further by combining several parametric NURBS
contours in a hierarchy. The algorithm enables the use of information from several
frames when doing septum segmentation, thus making the algorithm less sensitive to

72

4.2. Materials and Method

automation is likely to improve the robustness and repeatability of the clinical
measurements.

The interventricular septum wall thickness in end-diastole (IVSd) is a frequently
used measurement in echocardiography. In arterial hypertension, left ventricular
hypertrophy (LVH) is associated with increased risk of both cardiovascular morbidity
and mortality [1]. The American Society of Echocardiography [2] mentions the septal
and posterior wall thickness alone as a an easy way to detect LVH. The guidelines [2]
suggest a normal range for IVSd of 0.6-0.9cm for women and 0.6-1.0cm for men. A
septum is considered moderately abnormal when IVSd is measured between 1.3-1.5cm
for women and 1.4-1.6cm for men. Measurements above these values are considered
severely abnormal.

Current guidelines [2], recommend a parasternal long axis view in combination
with 2D B-mode or 2D targeted M-mode when measuring IVSd. The measurement
should be made at the level of the mitral valve leaflet tips. Targeted M-mode has
the advantage that it is easier to separate the septum from other structures such
as the moderator band, tricuspid apparatus or false tendons. On the other hand,
it can sometimes be difficult to place the M-mode cursor exactly perpendicular to
the septum, especially for untrained users. The image in 2D B-mode is visually more
intuitive than the M-mode, but the septal border can be blurred or completely missing
in single frames. On several pocket-sized devices, M-mode is not available, leaving 2D
B-mode as the only option.

This work aims to present a fast, automated lightweight system for IVSd
measurement, suitable for pocket-sized systems. Among the few publications on this
topic is a study by Moladoust et al. [3] that published a semi-automatic approach
using an adaptive thresholding algorithm. The motivation for automating the IVSd
measurement is to:

• Ease operation of pocket-sized systems, where manual image measurements are
unpractical

• Get more consistent results when the system is operated by less experienced
personnel

In this paper, the algorithm is first described in detail. Then, the results from a
feasibility study are presented and discussed.

4.2 Materials and Method

The proposed algorithm is based on contour tracking in 2D B-mode images using
coupled Non-Uniform Rational B-spline (NURBS) models and an extended Kalman
filter. The tracking scheme is based on the method proposed in [4]. Deformable model
segmentation using a Kalman filter framework has been previously published in [5–
8]. We take the approach one step further by combining several parametric NURBS
contours in a hierarchy. The algorithm enables the use of information from several
frames when doing septum segmentation, thus making the algorithm less sensitive to

72

4.2. Materials and Method

automation is likely to improve the robustness and repeatability of the clinical
measurements.

The interventricular septum wall thickness in end-diastole (IVSd) is a frequently
used measurement in echocardiography. In arterial hypertension, left ventricular
hypertrophy (LVH) is associated with increased risk of both cardiovascular morbidity
and mortality [1]. The American Society of Echocardiography [2] mentions the septal
and posterior wall thickness alone as a an easy way to detect LVH. The guidelines [2]
suggest a normal range for IVSd of 0.6-0.9cm for women and 0.6-1.0cm for men. A
septum is considered moderately abnormal when IVSd is measured between 1.3-1.5cm
for women and 1.4-1.6cm for men. Measurements above these values are considered
severely abnormal.

Current guidelines [2], recommend a parasternal long axis view in combination
with 2D B-mode or 2D targeted M-mode when measuring IVSd. The measurement
should be made at the level of the mitral valve leaflet tips. Targeted M-mode has
the advantage that it is easier to separate the septum from other structures such
as the moderator band, tricuspid apparatus or false tendons. On the other hand,
it can sometimes be difficult to place the M-mode cursor exactly perpendicular to
the septum, especially for untrained users. The image in 2D B-mode is visually more
intuitive than the M-mode, but the septal border can be blurred or completely missing
in single frames. On several pocket-sized devices, M-mode is not available, leaving 2D
B-mode as the only option.

This work aims to present a fast, automated lightweight system for IVSd
measurement, suitable for pocket-sized systems. Among the few publications on this
topic is a study by Moladoust et al. [3] that published a semi-automatic approach
using an adaptive thresholding algorithm. The motivation for automating the IVSd
measurement is to:

• Ease operation of pocket-sized systems, where manual image measurements are
unpractical

• Get more consistent results when the system is operated by less experienced
personnel

In this paper, the algorithm is first described in detail. Then, the results from a
feasibility study are presented and discussed.

4.2 Materials and Method

The proposed algorithm is based on contour tracking in 2D B-mode images using
coupled Non-Uniform Rational B-spline (NURBS) models and an extended Kalman
filter. The tracking scheme is based on the method proposed in [4]. Deformable model
segmentation using a Kalman filter framework has been previously published in [5–
8]. We take the approach one step further by combining several parametric NURBS
contours in a hierarchy. The algorithm enables the use of information from several
frames when doing septum segmentation, thus making the algorithm less sensitive to

72



Chapter 4. Automated septum thickness measurement

the image quality in the end-diastolic (ED) frame. The system is implemented in C++
and uses Matlab (v2008a, The Mathworks Inc.) for model design. The system loads
raw ultrasound beam data from dicom files and uses an in-house scan converter to
create cartesian images.

4.2.1 Deformable model

The algorithm utilizes a deformable model of the interventricular septum and the
mitral valve. The recording is assumed to be a standard parasternal long-axis view.
The deformable model is constructed using four NURBS curves which are coupled
using geometric transforms. A NURBS curve is a generalization of the commonly
used non-rational B-spline. It has the advantage of being linear in its parameters
and is thus suitable for parameter estimation. In addition, using NURBS instead
of regular B-splines offers more flexibility for shape preservation in the model. A
thorough description of NURBS is found in [9]. A point on a k’th degree NURBS
curve is denoted as pl(u) and found by:

pl(u) =

∑n
i=0 Ni,k(u)wiqi∑n
i=0 Ni,k(u)wi

, ulow ≤ u ≤ uhigh (4.1)

Ni,k(u) are the k’th-degree B-spline basis functions, qi are the spline control points
and wi are the weights assigned to each control point. uhigh and ulow are upper and
lower bounds for the parametric coordinate, u. The rational basis functions are defined
as:

bi,k(u) =
Ni,k(u)wi∑n
j=0 Nj,k(u)wj

, ulow ≤ u ≤ uhigh (4.2)

which allow us to write:

pl(u) =

n∑
i=0

bi,k(u)qi, ulow ≤ u ≤ uhigh (4.3)

The basis functions are defined on the knot vector:

U = ulow, . . . , ulow, uk+1, . . . , um−k−1, uhigh, . . . , uhigh (4.4)

The knot vector has been chosen such that ulow = 0, uhigh = 1 and uk+1, . . . , um−k−1

are uniformly distributed.
The complete model consists of four submodels. There is one submodel for the

left ventricle (LV) side of the septum, one for the right ventricle (RV) side, one for
the aortic outlet (AO) tract and one for the mitral valve (MV) leaflet. The submodels
are designed using Matlab (v2008a, The MathWorks, Inc.), and they are updated by
adjusting a subset of the control points.

The complete model is found by rotating (Rz), scaling (S) and translating (Tx,
Ty) the submodels relative to each other using basic two-dimensional geometric
transforms [10]. We denote the similarity transforms, allowing both rotation, scale
and translation, by T . Four similarity transforms are used. These are the LV side
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Figure 4.1: The transform hierarchy for the automated septum thickness measurement
system. RV = right ventricle. LV = left ventricle. The dynamic transformation
parameters for each similarity transform (circles) are indicated. (Tx = horizontal
translation, Ty = vertical translation , S = scale, Rz = rotation). The NURBS
submodels are represented by the squares.

transform (TLV ), RV side transform (TRV ), MV transform (TMV ) and mitral valve
leaflet (MVL) transform (TMVL). These transforms are arranged in a hierarchy, see
Fig.4.1. The combined geometric transformations can be written as:

pLV (u) = TLV (pl,LV (u)) (4.5)

pRV (u) = TLV (TRV (pl,RV (u)))

pAO(u) = TLV (TMV (pl,AO(u)))

pMV (u) = TLV (TMV (TMVL(pl,MV (u)))

where p(u) represents a point on the final contour and pl(u) a point on the contour,
prior to the transformations.

The initial points on the submodel contours, prior to application of transforms, are
found using the initial control points, q0,i, and (4.3). The complete initial model is
configured by manually tuning the transforms in (4.5). The left screenshot in Fig.4.2
shows how the four models are connected, and how the transforms have been used to
orient the models to an initial shape.

Some of the transform parameters are also used as variables in the segmentation
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scheme, as indicated in Fig. 4.1. This ensures that the different models are allowed
to move and scale relative to each other during tracking. As an example, the RV
side septum model can rotate and translate along the y-axis, relative to the LV side
septum model. Note that there is no relationship between the parameters in the
different similarity transforms, T . By defining a vector xg containing the nine dynamic
transformation parameters as:

xg = [TxLV , T yLV , SLV , RzLV , T yRV , RzRV , TxMV , SMVL, RzMVL] (4.6)

the transforms in (4.5) can be used to introduce the term global transform, Tg:

Tg,LV (pl,LV (u),xg) = TLV (pl,LV (u),xg) (4.7)

Tg,RV (pl,RV (u),xg) = TLV (TRV (pl,RV (u),xg),xg)

Tg,AO(pl,AO(u),xg) = TLV (TMV (pl,AO(u),xg),xg)

Tg,MV (pl,MV (u),xg) = TLV (TMV (TMVL(pl,MV (u),xg),xg),xg)

Based on the initial transform parameters and the continuously updated transform
parameters in xg, the global transforms convert points on each contour, prior to
geometric transformations, to the final model contour points.

Figure 4.2: The image to the left shows a screenshot of the initial model defined by
the four NURBS submodels and the transform hierarchy. To the right is the same
model after convergence

Each NURBS submodel is equipped with a predetermined number of parametric
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4.2. Materials and Method

The edge detection and block matching are used as input to the Kalman filter.
The septum models are designed as lines with a small bend in the basal region.

The purpose of these bends is to aid the model in correctly locating in the apex-base
direction. On the left side, the bend hooks onto the aortic outlet tract. The transition
from the septum to the aortic tract functions as a landmark for the model.

The LV side septum model is designed using 16 control points and a cubic NURBS
curve. The first four control points in the apical region are not allowed to change the
shape of the model. This is done due to the inferior image quality often seen in the
apical region. The septum model will preserve its shape even in poor images. This
is done at the cost of not being able to represent local deformations of the septum
in this region. As the measurement is to be taken at the mitral valve tip level, this
is not considered a problem for the accuracy. The NURBS weights are higher in the
basal region, in order to preserve the above mentioned bend. A number of 25 block-
matching and 40 edge detector points are distributed along the model. The LV side
septum model is shown in Fig.4.3a.

(a) Left Ventricle Side (b) Right Ventricle Side

Figure 4.3: Illustration of the septum models including control points (circles) and the
bends used to correctly locating the models in the apex-base direction. Models are
shown in model space, prior to transformations

The RV side model is more complex. It has 20 control points, of which 11 are
allowed to change the model shape. The first seven and the last two control points
are fixed. The seven fixed points are in the apical region, and they are fixed as
an aid to get the model to behave correctly in cases with poor image quality and
trabeculae/moderator band. Again, this reduces the ability to follow local septal
deformations in this region. The last two control points are also fixed to support the
NURBS weights in preserving the sharp transition between the septum and the bend.
The model is equipped with 40 edge detectors and 20 block matching points. The RV
side model is shown in Fig.4.3b.

The septum thickness measurement is done at the level of the MV tip. In order to
achieve this, a hinge model of the MV and aortic tract is used. This is created using
the TMVL transform, which allows the mitral valve leaflet model to rotate around one
tip of the aortic tract model. The aortic outlet tract model is also cubic and consists
of 13 control points of which every second is movable. It uses 20 edge detection points
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and 20 block-matching points. The leaflet model consists of 13 control points, of which
only the first one is movable.

4.2.2 Kalman tracking

Based on the framework from [4], the Kalman tracking scheme will now be discussed.
The IVSd measurement is made at the ED frame. Still, by using the Kalman filter,
temporal information is incorporated into the solution. By running the Kalman filter
through the heart cycle, it is possible to get a reasonable measurement, even though
the image quality in the ED frame is inferior. Edge detection and block matching
between successive frames are used to predict septum thickness based on the previous
frames. The prediction is then combined with measurements in the ED frame to get
the final IVSd value.

A Kalman filter requires the system to be based on a state vector representation.
Here, one part of the state vector is defined as the movement of the movable control
points along the curve normal. This part of the state vector is denoted local states,
xl.

qi = q0,i + xl,ini (4.9)

where q0,i is the mean/initial position of the control point and ni is the corresponding
normal displacement vector.

The dynamic transform parameters xg in (4.6) are used as global states. Combining
the local and global states yields a complete state vector, x = [xT

l ,x
T
g ]

T .
The system states and the points on the deformable model are related by the local

(Tl) and global transforms (Tg). The local transformation, Tl, converts the control
points to model points prior to application of geometric transforms. It is defined by
(4.3) and varies with the local states, xl. By considering each submodel separately
(omitting model subscripts) and splitting the control points into sets of movable (M)
and static (S) points, this can be written as:

pl(u) =
∑
i=M

bi,k(u)(q0,i + xl,ini) +
∑
i=S

bi,k(u)q0,i (4.10)

pl(u) = Tl(xl, u)

pl(u) is then transformed by the global transform to get the final position of the curve
point. The global transform is defined by (4.7) for each of the NURBS models. In
practice, it is found by multiplying basic geometric transformations on matrix form
[10]. For simplicity and readability, the model subscripts from (4.7) and the parametric
coordinate u are ommited in the following description.

p = Tg(pl,xg) (4.11)

The complete deformation model, T , contains both the local and global transforms.
The extended Kalman filter requires knowledge of the Jacobian of T . The local
Jacobian matrix is derived from (4.10) and is found by multiplying the displacement
vectors with their respective basis functions:

Jl = [bi0ni0 , bi1ni1 , . . .] (4.12)
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4.2. Materials and Method

This is a very efficient calculation and adds to the efficiency of the algorithm.
The global Tg transform is applied directly to curve points, as in 4.11. This is not

the case with the curve normals, where the curve normal transformation rule must be
applied [4, 11]:

ng =

∣∣∣∣∂Tg(pl,xg)

∂pl

∣∣∣∣
(
∂Tg(pl,xg)

∂pl

)−T

nl (4.13)

The overall Jacobian matrix is derived by applying the chain-rule of multivariate
calculus:

Jg =

[
∂Tg(pl,xg)

∂xg
,
∂Tg(pl,xg)

∂pl
Jl

]
(4.14)

Note that Tg is only differentiated with respect to the dynamic transformation
parameters.

During the prediction step, the state estimates are predicted based on the posterior
estimates from the last iteration. In this paper, the nomenclature of using a bar above
the variable to indicate the a priori value and a hat for the posterior value is used.
A model predicting the state vector for time k + 1, based on the deviation from the
mean state x0 is given as:

x̄k+1 − x0 = A(x̂k − x0) (4.15)

This is just the assumption that the model is unchanged between frames. The
regularization of the model is adjusted using the coefficients in the A matrix.

The NURBS curve points, normals and Jacobian matrix are now calculated based
on the prediction x̄k.

As input to the Kalman filter, edge measurements and block matching have been
used. The edge measurements are based on normal displacements. Np edge points are
distributed around the NURBS model. For each edge point on the model, an intensity
transition is searched for along the contour normal in this point. The distance from
the model point, p, to the measured edge point, pobs, is called a normal displacement
measurement v:

v = nT(pobs − p) (4.16)

In order to make this useful for the Kalman filter, it is necessary to take the normal
projection of the normal displacement measurement:

hT = nTJ (4.17)

This implies a separate measurement vector, h, for each normal displacement value.
Each measurement is also connected to a measurement noise value ri, which is
calculated as the inverse of the mean intensity difference across the detected edge
point. This is used to weight the influence of each edge detection measurement.

To correctly handle the regions on the RV side of the septum, different parts on
the model use different edge detectors. The normal displacement measurement and
the different edge detectors are illustrated in Fig.4.4. The purpose is to automatically
separate structures such as moderator band and trabeculae.
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transition is searched for along the contour normal in this point. The distance from
the model point, p, to the measured edge point, pobs, is called a normal displacement
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v = nT(pobs − p) (4.16)

In order to make this useful for the Kalman filter, it is necessary to take the normal
projection of the normal displacement measurement:

hT = nTJ (4.17)

This implies a separate measurement vector, h, for each normal displacement value.
Each measurement is also connected to a measurement noise value ri, which is
calculated as the inverse of the mean intensity difference across the detected edge
point. This is used to weight the influence of each edge detection measurement.

To correctly handle the regions on the RV side of the septum, different parts on
the model use different edge detectors. The normal displacement measurement and
the different edge detectors are illustrated in Fig.4.4. The purpose is to automatically
separate structures such as moderator band and trabeculae.
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The global Tg transform is applied directly to curve points, as in 4.11. This is not

the case with the curve normals, where the curve normal transformation rule must be
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Chapter 4. Automated septum thickness measurement

Figure 4.4: Illustration of the normal displacement measurement and the three
different types of edge detection criteria.

The LV side model and the basal part of the RV side model use a step detector.
The detector is based on the minimization of the sum of square errors (SSE) between
a perfect step function and the sample vector taken normal to the model. Weak edges
are discarded using a thresholding of the intensity difference across the edge transition
or the distance from the neighboring edge detector results.

The apical and middle part of the RV side of septum use a double edge detector,
which searches for the narrow low intensity region between the septum and the
moderator band often present in the right ventricle. The edge detector identifies
this region and pulls the model towards the septum, avoiding convergence towards
the moderator band. The detector uses windowing with overlap. For each windowed
segment, the center pixel becomes the candidate location for the low intensity region.
Then two linear regression lines are fitted to the data, one to the left of the candidate
point and one to the right. The SSE between these regression lines and the sample
vector segment is calculated. This is done for all possible windows. The window
containing the solution with the highest SSE is most likely the correct segment covering
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the low intensity region. The septum itself is now found by thresholding, starting out
from the identified point. The method is illustrated in Fig.4.5. Cases where there is
no visible moderator band are handled by checking the intensity difference between
the identified low intensity region and the the high intensity region. If the difference
is small, the edge detection is discarded.

The mitral valve leaflet uses an edge detector tailored to detect peaks in the sample
vector. It detects a transition from a low intensity to high intensity and back again,
using a threshold. The threshold is set to 25% of the sample length.

In addition to the edge measurements, block matching is applied. A set of Nt

points on the NURBS model defines the points that are tracked. The actual points
selected for tracking are taken 2mm into the tissue along the curve normal in the Nt

model points. The matching is based on the sum of absolute differences (SAD). The
normal component of the vector from the position of the matching points in frame k
to frame k+1 is used as a displacement vector, just as for edge detection.

Using the standard equations to calculate the Kalman gain would be computa-
tionally intensive, because there are many more measurements than there are states.
Therefore, the measurements are instead assimilated into information space. By
assuming that the measurements can be considered uncorrelated, the processing is
made very efficient, as the measurement covariance matrix, R becomes diagonal:

HTR−1v =
∑
i

hir
−1
i vi (4.18)

HTR−1H =
∑
i

hir
−1
i hT

i (4.19)

The Kalman gain, Kk used is given by:

Kk = P̂kH
TR−1 (4.20)

where P means the error covariance matrix. The posteriori estimate is found as:

x̂k = x̄k + P̂kH
TR−1vk (4.21)

The updated error covariance matrix using information space becomes:

P̂−1
k = P̄−1

k +HTR−1H (4.22)

4.2.3 Setting model depth

In order to initialize the model at the correct depth, an algorithm based on a template
fit has been used. The algorithm uses a template of a transition from low to high
intensity, then, after 1cm, a transition from high to low. This template is then
fitted to a vector containing the merged beams from the centermost part of the image
sector. The best fitting position is then used as the septum location. The procedure
is illustrated in Fig.4.6.
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Chapter 4. Automated septum thickness measurement

Figure 4.5: Illustration of the double edge criterion. The upper figure shows the overall
idea where minimizing the gray shaded area yields the center of the low intensity
region. The second figure shows the problem that occurs with noisy images, where
minimization of the area can not be used to directly detect the point of interest.
The two lower figures shows the practical solution. The line fitting is conducted in a
sliding window manner, each line detecting a local intensity drop using minimization
of the error, as in the ideal case. Among each local solution, the one with the highest
error, is most likely the point to of interest. Detection of septum is then done using
thresholding, as in the lower figure.
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Figure 4.6: Illustration of the depth initialization procedure by template fitting.

4.3 Test material

A dataset of 36 randomly selected recordings and 5 recordings with suspected
septal hypertrophy was collected from the Norwegian HUNT database [12]. The
HUNT database consists of volunteers from a normal population, without previously
diagnosed cardiovascular illnesses, hypertension or diabetes. An ethical committee
approval was obtained and informed consent for the study was obtained from all
human subjects per the WORLD Medical Association Declaration of Helsinki: Ethical
principles for medical research involving human subjects. All recordings were made by
a cardiologist using a Vivid 7 (GE Vingmed Ultrasound, Horten, Norway). M-mode
septum thickness measurement was a part of the protocol. Reproduceability data for
these M-mode measurements was published in [13]. 2D B-mode caliper measurements
were chosen as the reference method for the algorithm to enable use of the same image
data for reference and algorithm measurements. A brief comparison to the available
M-mode measurements was also made, as M-mode is the most frequently used method
for measuring IVSd.

Two cardiologists did B-mode reference measurements using the caliper function
in the EchoPac software (GE Vingmed Ultrasound, Horten, Norway). The first
cardiologist rated the quality of the recordings as ”good”, ”moderate”, ”poor” or
”very poor”. In four of the cases, the image quality was so poor that the clinician
was unable to measure the septum thickness using B-mode. These four recordings,
all from the group of 36 random cases, were discarded. The second cardiologist then
did B-mode reference measurements on the remaining 37 recordings. The reference
measurements from the two cardiologists were compared using a paired t-test and
correlation analysis. The average of the two reference measurements was used as the
reference for the IVSd algorithm test.

The algorithm was first run autonomously, analyzing all recordings as a batch. For
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each case, an image of the segmentation was stored together with the measurement
value for the last ED in the recording. The ECG trace was available, and the onset
of the QRS complex was used as a marker for ED. Each recording typically had 3
complete heart cycles. In cases where the images revealed failing depth initialization,
the analysis was run again semi-automatically with manual correction of the depth
initialization using arrow up and down on the computer keyboard. The automatic
analysis was run on all the 37 recordings where reference B-mode measurements were
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Examples of IVSd measurements in ”poor”, ”moderate” and ”good” image quality
recordings are provided in Fig.4.7. The references and automatic measurements both
tested successfully for normality. The difference between the two cardiologists’ B-
mode measurements was found to be 1.29mm± 1.23mm (p < 0.001). The correlation
coefficient was 0.84 (p < 0.001).

A scatter plot of the automatic analysis versus the reference is found in Fig.4.8.
The error between the automatic measurement and the reference was found to be
0.14± 1.36mm (p=0.532). Pearson’s correlation coefficient was 0.79 (p < 0.001). See
Fig.4.9 for the Bland and Altman plot. The 95% limits of agreement were -2.53mm
to 2.81mm. By excluding the 14 recordings labeled as ”poor” or ”very poor” image
quality, the paired t-test yielded 0.32± 1.27mm (p=0.197). The correlation increased
to 0.83 (p < 0.001). In 8 of 37 (21.6%) cases, the initialization failed and had to be
corrected by the user. From the group of 5 hypertrophic patients, 3 recordings needed
correction.

Compared to the M-mode references, the automatic IVSd algorithm achieved a
mean error of −0.24± 1.45mm (p=0.320). The correlation was 0.74 (p < 0.001).

4.5 Discussion

The difference between the automated algorithm and the reference was not found to
be statistically significant. A close correlation (r=0.79) between the algorithm result
and the reference was found. The correlation improved (r=0.83) when the poor image
quality recordings were excluded. The maximum error exceeded the difference between
a normal and a mildly hypertrophic septum [2], which is typically 2-3mm. The 95%
limits of agreement suggest that the accuracy is suitable for separating betweeen a
moderately hypertrophic and normal septum, according to the limits in [2].

The standard deviation of the error (1.36mm) is considerable, but comparable to
the standard deviation of the difference between the cardiologists (1.23mm). The
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4.5. Discussion

is in line with the recommendations [2], where this difficulty of correctly detecting the
right ventricle side septal border in B-mode images is addressed by suggesting M-mode
based analysis.

The semi-automatic method in [3] used apical images to measure septal thickness
and reported a bias of 0.12mm and a standard deviation of the error of 0.72mm in the
mid segments of the septum. It should be noted that the use of apical images is not
recommended for measuring septal thickness [2], and the authors did not state whether
the manual measurements were made by a cardiologist, nor how many observers there
were. The authors used recordings from 12 healthy volunteers.

The algorithm performed fully automatically in 29 of the 37 cases (78.4%). In
case of the hypertrophic data 3 of 5 cases needed correction. This suggests that the
convergence radius of the model combined with the depth initializer does not work
well enough to cover all anatomical variations.

The computation time suggests that real-time operation is feasible on laptop
computers. Provided that the computational capacity of the pocket-sized systems
is approaching that of a regular laptop computer, the algorithm is suitable for real-
time operation also on these systems. If, instead, the algorithm is chosen as a post-
processing tool, it is not necessary to process all frames. It would be sufficient to use
the ED and some preceding frames.

This work has some limitations. One problem is that the results of the fully
automatic operation were not separated from the total results. So even if a feasibility
for automatic operation of 78.4% is claimed, the acurracy of the fully automatic
numbers has not been presented separately. Another limitation is that the total
number of patients in the feasibility study is limited, and only 5 cases with hypertrophy
were found in the available data material. This is likely caused by previously diagnosed
hypertension being an exclusion criterion in the HUNT study [12], and hypertension
is the most frequent cause of septal hypertrophy [16]. Another limitation is that
the septal thickness interobserver variability numbers found in the literature, are
based on M-mode. Thus, there is some uncertainty how this translates to B-mode
measurements. In addition, even if the algorithm was designed for pocket-sized
ultrasound devices, it has not yet been tested on such a device. The algorithm currently
relies on ECG input to find end diastole. On truly pocket-sized devices, such as Acuson
P10 or GE Vscan, no ECG is available and a different way of establishing end diastole
must be considered. Moreover, the target user population of the algorithm is the group
of inexperienced users of ultrasound, while in this work the images were acquired by
a trained cardiologist.

Future work should focus on improving the initialization procedure. A more robust
method of detecting the septum position, or a landmark close to the septum, could
possibly be developed to yield a fully automatic solution. Alternatively, other solvers
than the extended Kalman filter, such as an unscented Kalman filter [17], could be
explored, to see whether the convergence radius of the model can be increased without
compromising the computational efficiency of the current solution.
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Chapter 4. Automated septum thickness measurement

4.6 Summary and Conclusions

The proposed algorithm was used to measure the septum thickness in randomly
selected patients from a database containing imagery with similar quality as expected
in a clinical practice. The algorithm has proven to be computationally efficient, and
the accuracy is comparable to that of manual B-mode measurements performed by two
cardiologists. It overcomes the problem of moderator band and/or trabeculae in the
majority of the cases. It provides a fast indication of septal hypertrophy, but the IVSd
measurement value should be presented together with an image of the measurement
caliper line for visual approval, especially in patients for which the image quality is
suboptimal. In principle, the algorithm is fully automatic. In practice, the automatic
initialization failed in 21.6% of the cases and required manual re-initialization. As the
error is easily corrected, this does not significantly alter the usability of the algorithm,
even for inexperienced users.
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Automatic Real-time View
Detection
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This work presents an algorithm capable of classifying an echocardiographic
view as either an apical two chamber view, four chamber view or long axis
view. It also provides a score on the overall image quality.
The algorithm is based on a deformable non uniform rational B-spline
(NURBS) model updated in an extended Kalman filter framework. Models
are constructed for each of the three standard views. Each model is updated
using a combination of edge and speckle-tracking measurements, where weak
edges and edges strongly deviating from their neighbor edges are discarded.
The most probable standard view is found using feature detection and general
successfulness in detecting edges. This is also used as a measure of overall
view quality.
The algorithm was trained and validated using 68 recordings from the
Norwegian HUNT database. An echocardiographer classified each recording
as one of three standard views. 33 randomly chosen recordings, with
approximately 10 of each view, were used for training. The other 35 recordings
were used for validation. The algorithm successfully classified the view in 32
of 37 cases (86.5%). Each classification is accompanied by a score, which can
be used to assess image quality.

6.1 Background

When a non-experienced user of ultrasound is to do an examination, he will run into
three main challenges

• Getting a standard view of acceptable image quality
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6.1. Background

• Extracting qualitative information from the image

• Extracting reliable and repeatable quantitative information from the image

The future ultrasound systems should aid the user in overcoming these challenges.
Getting the correct view can here be said to be the fundamental problem and acts as
a preequisute for the other two challenges.

This work targets to aid the user in recognizing a standard view and to give the
automatic algorithms a way to recognize when they have an image acceptable for
analysis. The approach is model-based using non-uniform rational b-splines and an
extended Kalman filter. It works by fitting models of the common standard views to
real-time image data.

6.1.1 Prior Work

Some prior work has been presented on automatic view detection for cardiac images.
In [1], the authors present an algorithm based on a model template fit using parts-
based representation. The different parts are described using appearance modeling and
they are interconnected by spring-like models. They apply the Gray-Level Symmetric
Axis Transform to identify the chambers and use Markov Random Fields to model
how the chambers are related to each other. The classification itself is done using a
support vector machine classifier and leave-one-out cross validation. They achieved
an accuracy up to 88.35%.

The authors in [2] present an algorithm based on multiresolution elastic
registration. When merging the apical two chamber and four chamber views, they
achieve an accuracy of 93%. Classification into all four classes (apical two and four
chamber, parasternal short and long axis) yielded an accuracy of 90%. Their algorithm
may need several templates for each view, in order to cover all the variations in
anatomy and operator skills.

Otey et al. [3] use a hierarchical classification approach where they first classify
the imaging window (apical, parasternal) and then do a second classification for each
imaging window. The overall accuracy on their test data is 90.9%.
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Chapter 6. Automatic Real-time View Detection

6.2 Algorithm

6.2.1 Parametric model

The applied parametric models are based on Non-Uniform Rational B-splines
(NURBS). This is a generalization of the commonly used nonrational B-splines, [6].

pl(u) =

∑n
i=0 Ni,k(u)wiqi∑n
i=0 Ni,k(u)wi

, a ≤ u ≤ b (6.1)

Ni,k(u) are the k’th-degree B-spline basis functions. qi are the control points for the
spline. Lastly, wi are the weights of the NURBS curve. We denote points on the
NURBS curve as pl(u).

By carefully selecting the control points, weights and knot vector, it is possible
to represent a large variety of curves. The knot vector has been chosen such that
uk+1, . . . , um−k−1 are linearly distributed.

Complex models are made by combining different NURBS curves. The three
considered standard views are apical four chamber (A4CH), apical two chamber
(A2CH) and apical long axis (APLAX). The views are described in [7] and [8].

An A4CH is identified by the presence of four cavities. These are the left atrium
(LA), right atrium (RA), left ventricle (LV) and right ventricle (RV). Each of the
cavities is modeled by a closed cubic NURBS curve, using 12 control points of which 8
are allowed to move. An example of the LV model is shown in figure 6.1. The presence
of RV is a strong marker for this view, and this has been reflected in the view scoring
system.

The A2CH consists of LA and LV. There are no easy markers for this view, and
the model may very well fit both to APLAX and A4CH views.

The APLAX is best identified by the presence of an aortic outlet tract. Thus, this
model consists of LA and LV, as well as a model of the outlet tract.

6.2.2 Kalman tracking framework

The Kalman filter contour tracking framework is based on an extension of the software
published by Orderud et. al, [9], supporting NURBS.

System states

A Kalman filter requires the model or system to be described by states. We choose
to denote the normal displacement of the control vertices as the local states, xl. A
control point can be written as:

qi = q̄i + xl,ini (6.2)

where ni is the normal displacement vector for the control vertex and q̄i is the mean
position of the control vertex. The pose parameters (translation, rotation and scale)
are used as global states, x̄g. Combining the local and global states, yields x = [xl xg].
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Figure 6.1: NURBS model of the left ventricle, using 12 control points of which 8 are
allowed to move

The relation between the system states and the points on the deformable model is
likewise described by a local (Tl) and global transform (Tg). We denote the points on
the final contour as p. Points on the contour prior to application of the global pose
are written as pl. We define a vector u with length Nc where 0 ≤ ui ≤ 1. This yields:

pl = [pl(u0), pl(u1), . . . , pl(uNc−1)] (6.3)

where pl(ui) is evaluated using equation 6.1. This defines the local transformation Tl.
pl is then transformed by the global pose transform, Tg to get the correct position of
the model.

p = Tg(pl,xg) (6.4)

The composite deformation model, T includes both the local and global transforms.
It is necessary to calculate the Jacobian of T. The local Jacobian matrix can easily be
found by multiplying the displacement vectors with their respecitve basis functions:

Jl = [bi0ni0 , bi1ni1 , . . .] (6.5)

This can be precomputed, and thus eases the real-time operation. The global Tg

transform can be applied directly to curve points, as in 6.4. The overall Jacobian
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matrix can be derived applying the chain-rule of multivariate calculus:

Jg =

[
∂Tg(pl,xg)

∂xg
,
∂Tg(pl,xg)

∂pl
Jl

]
(6.6)

Prediction

During the prediction step, the state estimates are predicted based on the posterior
estimates from last iteration.

x̄k+1 = Ax̂k (6.7)

Measurements

As input to the Kalman filter, a combination of edge measurements and block matching
has been used. The edge measurements are performed along the curve normals. Np

edge points are distributed around the NURBS model. For each edge point, it is
searched for an intensity transition along a normal to the NURBS curve in this
point. The distance from the edge point to the measured measured edge point is
called a normal displacement measurement v. The displacements are also weighted
by a measure of edge confidence. The measure used is the mean-square error (MSE)
between the transition model (step) and the sample data. Edge measurements with a
very high MSE are marked as invalid and discarded.

v = nT (pobs − p) (6.8)

This measurement must be converted to state space, in order to be useful for the state
update. The measurement model must be linear to fit in the Kalman filter framework.
This is done using the normal vector projection of the Jacobian:

hT = nTJ (6.9)

The normal displacement measurements are thus now related to the state vector
through hT .

In addition to the edge measurements, block matching has been used to track
movement. Nt points on the NURBS model are selected as centres for the block
matching blocks. These points are tracked using regular SAD block matching. The
normal component of the displacement vector between consecutive frames is used as
a measurement in a same manner as for edge detection. This is very similar to the
work in [10], except that the control points again are restricted to move in the normal
direction only. This use of block matching is not strictly necessary, but adds to the
robustness of the method.

Assimilation and update

The measurements are assimilated into information space to save computation time.
The Kalman gain and the update step is then calculated. See for instance [9] or [11]
for more details.

115

Chapter 6. Automatic Real-time View Detection

matrix can be derived applying the chain-rule of multivariate calculus:

Jg =

[
∂Tg(pl,xg)

∂xg
,
∂Tg(pl,xg)

∂pl
Jl

]
(6.6)

Prediction

During the prediction step, the state estimates are predicted based on the posterior
estimates from last iteration.

x̄k+1 = Ax̂k (6.7)

Measurements

As input to the Kalman filter, a combination of edge measurements and block matching
has been used. The edge measurements are performed along the curve normals. Np

edge points are distributed around the NURBS model. For each edge point, it is
searched for an intensity transition along a normal to the NURBS curve in this
point. The distance from the edge point to the measured measured edge point is
called a normal displacement measurement v. The displacements are also weighted
by a measure of edge confidence. The measure used is the mean-square error (MSE)
between the transition model (step) and the sample data. Edge measurements with a
very high MSE are marked as invalid and discarded.

v = nT (pobs − p) (6.8)

This measurement must be converted to state space, in order to be useful for the state
update. The measurement model must be linear to fit in the Kalman filter framework.
This is done using the normal vector projection of the Jacobian:

hT = nTJ (6.9)

The normal displacement measurements are thus now related to the state vector
through hT .

In addition to the edge measurements, block matching has been used to track
movement. Nt points on the NURBS model are selected as centres for the block
matching blocks. These points are tracked using regular SAD block matching. The
normal component of the displacement vector between consecutive frames is used as
a measurement in a same manner as for edge detection. This is very similar to the
work in [10], except that the control points again are restricted to move in the normal
direction only. This use of block matching is not strictly necessary, but adds to the
robustness of the method.

Assimilation and update

The measurements are assimilated into information space to save computation time.
The Kalman gain and the update step is then calculated. See for instance [9] or [11]
for more details.

115

Chapter 6. Automatic Real-time View Detection

matrix can be derived applying the chain-rule of multivariate calculus:

Jg =

[
∂Tg(pl,xg)

∂xg
,
∂Tg(pl,xg)

∂pl
Jl

]
(6.6)

Prediction

During the prediction step, the state estimates are predicted based on the posterior
estimates from last iteration.

x̄k+1 = Ax̂k (6.7)

Measurements

As input to the Kalman filter, a combination of edge measurements and block matching
has been used. The edge measurements are performed along the curve normals. Np

edge points are distributed around the NURBS model. For each edge point, it is
searched for an intensity transition along a normal to the NURBS curve in this
point. The distance from the edge point to the measured measured edge point is
called a normal displacement measurement v. The displacements are also weighted
by a measure of edge confidence. The measure used is the mean-square error (MSE)
between the transition model (step) and the sample data. Edge measurements with a
very high MSE are marked as invalid and discarded.

v = nT (pobs − p) (6.8)

This measurement must be converted to state space, in order to be useful for the state
update. The measurement model must be linear to fit in the Kalman filter framework.
This is done using the normal vector projection of the Jacobian:

hT = nTJ (6.9)

The normal displacement measurements are thus now related to the state vector
through hT .

In addition to the edge measurements, block matching has been used to track
movement. Nt points on the NURBS model are selected as centres for the block
matching blocks. These points are tracked using regular SAD block matching. The
normal component of the displacement vector between consecutive frames is used as
a measurement in a same manner as for edge detection. This is very similar to the
work in [10], except that the control points again are restricted to move in the normal
direction only. This use of block matching is not strictly necessary, but adds to the
robustness of the method.

Assimilation and update

The measurements are assimilated into information space to save computation time.
The Kalman gain and the update step is then calculated. See for instance [9] or [11]
for more details.
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∂pl
Jl

]
(6.6)
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6.3 View scoring

The scoring is based on the number of failing edge detections during a heart cycle. If
the model has a poor fit, more of the edge detection search normals will fail to include
an edge. If the edge detector fail more often in some regions than others, this can be
used to assess regional fit. As explained in the Parametric model section 6.2.1, the
different models are identified by some features. For the A4CH, the model score is first
calculated individually for each chamber, SLA, SRA, SLV , SRV . The score is calculated
using the number of failing edges Nf divided by the number of edge detection points
in each model Ne. In addition, a set of rules is applied to the scores. Poorly visible
atria are thresholded to zero, to allow for zoomed images:

SX =

{
1− NfX

NeX
if 1− NfX

NeX
> TX

0 otherwise
X = {LA,RA}

(6.10)

A fairly well visible RV is given priority by adding a gain to the score, KRV , when
the score is above a certain threshold, TRV :

SRV =

{
1− NfRV

NeRV
+KRV if 1− NfRV

NeRV
> TRV

1− NfRV

NeRV
otherwise

(6.11)

The LV is not given special priority as it is present in all standard views:

SLV = 1− NfLV

NeLV
(6.12)

The total A4CH score is then given by:

SA4CH = min

{
0.5 (SLV + SRV ) + SLA + SRA

1
(6.13)

The APLAX is handled in a similar manner. The LV and LA scores are calculated
as for the four chamber case. In addition, there is an aortic outlet tract model.
Detection of the tract adds to the score, while lack of detection reduces score:

SAO =

{
−KAO if 1− NfAO

NeAO
< TAO

KAO otherwise
(6.14)

The total score is then calculated as:

SAPLAX = min

{
0.7 SLV + 0.3 SLA + SAO

1
(6.15)

For the A2CH view, the LV and LA score are calculated as for the other models.
The total score is calculated as:

SAPLAX = 0.7 SLV + 0.3 SLA (6.16)
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Table 6.1: Parameters for the view detection algorithm

Model Parameter Value

A4CH TLA 0.50

TRA 0.20

TRV 0.50

KRV 0.50

APLAX TLA 0.00

TRA 0.00

TAO 0.40

KAO 0.33

A4CH TLA 0.00

TRV 0.00

Table 6.2: Overall results shown as percentage successfull classifications.

Total Performance 86.5 %

A4CH Performance 86.7 %

A2CH Performance 90.9 %

APLAX Performance 81.8 %

6.4 Results

The algorithm has been tested and validated using 68 recordings from the Norwegian
HUNT database. The data are from volunteers (age 31-79 years)free from known
cardiovascular disease, diabetes or hypertension. A cardiologist examined the 68
recordings and classified them as one of the three standard apical views. 33 randomly
chosen recordings from the set, were used as training set. The algorithm was tuned
to perform well on the training set. The parameters chosen are shown in table 6.1.
The computation time per view model is less than 6ms on a desktop computer and is
thus suitable for realtime implementation. It should also be possible to achieve a total
running time of less than N*6ms where N is the number of view templates.

The algorithm was then tested using a test set of 37 recordings. No tuning was
done using these data. The results are presented in table 6.2 and 6.3.

6.5 Discussion

The overall success rate of the algorithm was 86.5%. In this test, it failed most often
for the APLAX. The data material is not large enough to decide whether this will
always be the case. The algorithm has a challenging task of correctly identifying
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Table 6.3: Classification results. Bold numbers indicate the number of correct
classifications.

Model

V
ie
w

A4CH A2CH APLAX

A4CH 13 2 0

A2CH 1 10 0

APLAX 0 2 9

Figure 6.2: Example of an A4CH classification. The A4CH is 91.2%, the A2CH score
is 75.4% and the APLAX score is 41.7%. The view is classified as A4CH, and the
score of 91% indicates a good image quality

the A2CH. The scores for the A2CH views are typically lower than for APLAX and
A4CH. This is due to the lack of landmarks to be used in the calculation of the scores.
The difference between scores is lower for the A2CH identification than for the other
models. Still, the algorithm only failed for one A2CH recording.

For A4CH and APLAX, the correct view most often has a score much higher
than for the other models. The identification typically fails when a landmark is not
detected, for instance when the image quality in the basal region of an APLAX image
is so poor that the aortic outlet tract is not detected. The other failure mode is when
another model incorrectly detects a landmark which is not present. This may occur for
instance in the A2CH or APLAX views, when sometimes there is a hypoechoic region
to the left of the pericardium. This region is occasionally identified as RV, causing
the view to be classed as A4CH. As it has been chosen to allow incomplete atria, this
situation can not directly be avoided using the presence of RA.

When it comes to judging the quality of the view, the scores give a repeatable
indication. The emphasis is on landmarks. That means a view is given a higher score
the more landmarks that are detected. This will give priority to the positioning of the
view and less priority to the overall image quality. This can easily be changed to suit
the particular needs of each application. A challenge still remaining is to successfully
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differ between a correct view of poor image quality and an incorrect view with good
image quality. This is especially the case for the A2CH views.

The method should easily expand to fit parasternal views, by fitting new models.
Because these models will look different from the apical models, it is less likely that
they will have large impact on the success rate on the apical views.

6.6 Conclusions

A novel method for automatic detection of the imaging view in cardiac ultrasound
using the apical probe position has been presented. The system has a success rate
of 86.5% when tested with realistic ultrasound data. The algorithm is extendable
to other probe positions. The system may be used as feedback to the user, or as a
preprocessing step for automatic algorithms supporting diagnosis.
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Chapter 7

Real-time Scan Assistant for
Echocardiography
Sten Roar Snare1, Hans Torp1, Fredrik Orderud3,
and Bjørn Olav Haugen1,2

1 Dept. Circulation and Medical Imaging, NTNU
2 Dept. Cardiology, St. Olav Hospital, Trondheim, Norway
3 GE Vingmed Ultrasound, Oslo, Norway

A real-time scan assistant (SA) for use with echocardiography is presented.
The motivation is to aid non-expert users to capture apical 4-chamber views
(A4CH) during echocardiography.
The algorithm is based on a parametric multi-chamber model of the A4CH
view, updated in an extended Kalman filter framework. The regional model
goodness of fit is used to calculate a score, which together with an icon
(emoticon), is provided in real-time to the user, indicating whether the current
view is acceptable or not.
The SA was implemented on a commercially available scanner. A feasibility
test was performed using two healthy volunteers as models and 10 medical
students to act as non-expert users. The students examined the models at
two occasions, separated more than four days in time. Half of the students
used the SA during the first exam and no SA at the second exam. The
other half did it the other way around. The recordings were later rated by
a cardiologist. A Wilcoxon Signed Pair Rank test revealed a statistically
significant improvement when using SA. Nine cases were rated as poor
without using the SA. In eight (89%) of these cases, view quality improved to
acceptable when the SA was used.

7.1 Introduction

Because of the increasing number of small, portable and low-cost ultrasound systems
emerging on the market, it is expected that future scanners will be operated also by
less experienced users of ultrasound. When a non-expert user of ultrasound is to do a
cardiac examination, he will run into three main challenges:
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7.2. Algorithm

• Getting a standard view of acceptable image quality.

• Extracting qualitative information from the image.

• Extracting reliable and repeatable quantitative information from the image.

Future ultrasound systems should aid the user in overcoming these challenges.
Getting a good view is the fundamental problem. This work has focused on acquisition
of the apical 4-chamber view (A4CH), traversing both ventricles and atria through
the mitral and tricuspidal valves, as this is one of the most informative views in
echocardiography.

Little work has been published on real-time user feedback for image improvement
during ultrasound scanning. In [1], the authors presented an indicator for the acoustic
contact between the probe and the object of interest. This approach can be used to
warn the user of a poor acoustic window due to ribs or lack of acoustic gel, but no
information about the view is provided.

View detection is a topic frequently encountered in the echocardiographic research
literature. The target is to automatically differentiate between standard views for
sorting databases of recordings, or for use with measurement and analysis software.
These are typically offline solutions based on classification schemes [2], often combined
with image registration [3] or template fitting [4]. The approach in [5] was based on
machine learning from an annotated database.

The authors in [6] published work on a highly efficient algorithm for automatic
alignment of standard views in 3D echocardiography using an extended Kalman filter.
This approach was modified to suit 2D view detection in [7], where it was also
forecasted that a real-time implementation was feasible.

In this work we modify the approach in [7] and present a scan assistant (SA)
algorithm for aiding the user during acquisition. In the following, the algorithm is
presented in detail. Results from a feasibility test where 10 medical students used the
SA when scanning two healthy volunteers are also provided.

7.2 Algorithm

The algorithm is based on a real-time adaption of a template view model to the image
data. During acquisition, the user is shown a score for how close the current view
resembles a standard A4CH view. The score is derived by measuring the model’s
quality of fit. In the following sections we present the parametric model, the Kalman
filter framework used for updating the model and the view scoring scheme.
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(c) Atrium Model

Figure 7.1: NURBS models of the cardiac chambers. All models are using 12 control
points, of which 8 are allowed to move. The densely spaced x-marks represent edge
detector points. Note that the base of the models and the right ventricular free wall
do not have edge detectors

7.2.1 Parametric model

The applied parametric models are based on Non-Uniform Rational B-splines
(NURBS). This is a generalization of the commonly used nonrational B-splines [8].

bi,k(u) =
Ni,k(u)wi∑n
j=0 Nj,k(u)wj

, ulow ≤ u ≤ uhigh (7.1)

pl(u) =
n∑

i=0

bi,k(u)qi, ulow ≤ u ≤ uhigh (7.2)

bi,k are the rational basis functions. Ni,k(u) are the k’th-degree B-spline basis
functions. The control points for the spline are denoted qi, the weights of the NURBS
curve as wi and the points on the NURBS curve as pl(u). The knot vector has been
chosen such that ulow = 0, uhigh = 1 and uk+1, . . . , um−k−1 are uniformly distributed.

A more complex view model is made by combining different curves. The A4CH view
is described in [9, 10]. It is mainly characterized by the presence of four cavities. These
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detector points. Note that the base of the models and the right ventricular free wall
do not have edge detectors

7.2.1 Parametric model

The applied parametric models are based on Non-Uniform Rational B-splines
(NURBS). This is a generalization of the commonly used nonrational B-splines [8].

bi,k(u) =
Ni,k(u)wi∑n
j=0 Nj,k(u)wj

, ulow ≤ u ≤ uhigh (7.1)

pl(u) =
n∑

i=0

bi,k(u)qi, ulow ≤ u ≤ uhigh (7.2)

bi,k are the rational basis functions. Ni,k(u) are the k’th-degree B-spline basis
functions. The control points for the spline are denoted qi, the weights of the NURBS
curve as wi and the points on the NURBS curve as pl(u). The knot vector has been
chosen such that ulow = 0, uhigh = 1 and uk+1, . . . , um−k−1 are uniformly distributed.

A more complex view model is made by combining different curves. The A4CH view
is described in [9, 10]. It is mainly characterized by the presence of four cavities. These
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Figure 7.2: Initial fit of the apical 4-chamber view model.

are the left atrium (LA), right atrium (RA), left ventricle (LV) and right ventricle
(RV). Each of the cavities is modeled by a closed cubic NURBS curve using 12 control
points, of which 8 are allowed to move. The first and last control points are in the
middle of the base. The control points in the base are fixed in order to preserve the
shape. The same model is used for the left and right atrium. The cavity models
are illustrated in Fig. 7.1. The NURBS models are joined by similarity transforms,
combining translation, rotation and uniform scaling [11], into a complete view model.
The LV similarity transform, TLV , is the main transform. The other models each have
a dedicated similarity transform positioning them relative to the LV model. This can
be written:

pLV (u) = TLV (pl,LV (u)) (7.3)

pRV (u) = TLV (TRV (pl,RV (u)))

pLA(u) = TLV (TLA(pl,LA(u)))

pRA(u) = TLV (TRA(pl,RA(u)))

An example of the complete initial model is provided in Fig. 7.2.

7.2.2 Kalman tracking framework

The Kalman filter contour tracking framework is based on an extension of the method
published in [12], supporting NURBS.

System states

A Kalman filter requires the model or system to be described by states. The
displacement component, normal to the curve, of the control points are denoted as
the local states, xl. A control point can be written as:

qi = q̄i + xl,ini. (7.4)
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where ni is the normal displacement vector and q̄i is the mean position of the control
point. Some of the similarity transforms parameters are defined as dynamic and
used as global states, xg. More detailled, all the LV similarity transform parameters
(translation, rotation, scale) are dynamic, as well as the scale parameters of the atrial
similarity transforms (TRA, TLA). Combining the local and global states, yields x =
[xT

l ,x
T
g ]

T .
The system states and the points on the deformable model are related by the local

(Tl) and global transforms (Tg). The local transformation, Tl, converts the control
points to model points prior to application of geometric transforms. By considering
each cavity model separately and splitting the control points into sets of movable (M)
and static (S) points, Tl can be derived from (7.2) as:

pl(u) =
∑
i=M

bi,k(u)(q0,i + xl,ini) +
∑
i=S

bi,k(u)q0,i (7.5)

pl(u) = Tl(xl, u)

pl(u) is then transformed by the global transform to get the final position of the curve
point. The global transform is defined by (7.3) for each of cavity models. In practice,
it is found by multiplying basic geometric transformations on matrix form [11]. For
simplicity and readability, the model subscripts and the parametric coordinate u are
ommited in the following description.

p = Tg(pl,xg) (7.6)

The complete deformation model, T , contains both the local and global transforms.
The extended Kalman filter requires knowledge of the Jacobian of T. The local
Jacobian matrix is derived from (7.5) and is found by multiplying the displacement
vectors with their respective basis functions:

Jl = [bi0ni0 , bi1ni1 , . . .]. (7.7)

This is precomputed, and thus eases the real-time operation. The global Tg transform
is applied directly to curve points, as in (7.6). The overall Jacobian matrix is derived
by applying the chain-rule of multivariate calculus:

Jg =

[
∂Tg(pl,xg)

∂xg
,
∂Tg(pl,xg)

∂pl
Jl

]
. (7.8)

Prediction

During the prediction step, the state estimates are predicted based on the posterior
estimates from the last iteration:

x̄k+1 − x0 = A(x̂k − x0). (7.9)

The A matrix defines the regularization of the view model.
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7.2. Algorithm

Measurements

The Kalman filter takes edge measurements performed along curve normals as input.
Np edge points are distributed around each of the NURBS curves. This is illustrated
by the densely spaced x-marks in Fig. 7.1. There are no edge detectors in the regions
where the valves are expected. The apical part of the right ventricle free wall often
suffer from dropouts, and thus the edge detectors in this region have been removed.

For each edge point, it is searched for an intensity transition along a normal to the
NURBS curve. The length of the edge search normal implicitly defines the convergence
radius of the model. Two different edge detectors have been applied. Most regions
of the models use a step detector, based on minimization of the sum of square errors
(SSE) between a perfect step function and the sample vector taken normal to the
model. The lateral wall of the left ventricle and the free wall of the right ventricle are
using a gradient edge detector, which detects a peak in the derivative of the search
vector intensity. The distance from the edge point to the measured measured edge
point is called a normal displacement measurement v :

v = nT (pobs − p). (7.10)

Weak edges are discarded using thresholding of the intensity difference across the
detected edge or the distance from the neighboring edge detector results. The inverse
of the mean intensity difference across the detected edge point, is used as a measure
of edge confidence. The edge measurement must be converted to state space, in order
to be useful for the state update. The measurement model must be linear to fit in the
Kalman filter framework. This is achieved by using the normal vector projection of
the Jacobian:

hT = nTJ. (7.11)

The normal displacement measurements are thus now related to the state vector by
hT .

Assimilation and update

The measurements are assimilated into information space to save computation time.
The Kalman gain and the update step are then calculated as described in [12, 13].

7.2.3 View scoring

The scoring system is based on the number of failing edge detections. If the model has
a poor fit, more of the edge detection search normals will fail to include a valid edge.
If the edge detection fails more often in some regions than others, this can be used
to assess regional fit. As explained in the Parametric model section 7.2.1, the A4CH
model consists of four NURBS curves, each representing a cardiac chamber. A model
score is first calculated individually for each cavity, SLV , SRV , SLA, SRA. The score is
calculated using the number of failing edges, Nf , divided by the total number of edge
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detection points in each model, Ne:

SX =

{
1− NfX

NeX
if 1− NfX

NeX
> T

−KX otherwise
X = {LV ,RV ,LA,RA}

KX ≥ 0

(7.12)

The score is thresholded to a zero or negative number if the result is too poor. This is
used to penalize missing or poorly visible cavities. One of the major challenges when
acquiring an A4CH view, is to prevent foreshortening of the view. Missing or poorly
visible atria is a sign of an oblique cut of the ventricle and should be penalized. This is
achieved by increasing the penalty KLA and/or KRA. The total A4CH score is given
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The scan assistant was implemented on a GE Vivid E9 (GE Vingmed Ultrasound,
Horten, Norway). For visualization, in addition to displaying the score value, an
emoticon (”smiley-face”) was added to aid the user deciding whether the view was
poor, fair or good. Scores lower than the Tpoor threshold are reported as poor (sad
face). Scores larger than or equal to Tpoor, but lower than the Tfair threshold, are
reported as fair (straight face). Scores above Tfair are considered good (smiling face).
A user option whether or not to display the view template model during acquisition
was also included.

The algorithm was tuned using 35 recordings of various quality. Both good A4CH
recordings and completely erroneous recordings were used. The view model was
adjusted to be stiff. A flexible model would better fit to the cavities, but would also be
more prone to error by more easily adapting to faulty views. Two cardiologists scored
the recordings as having good, fair or poor quality. The thresholds for the emoticon
was set to give a good correspondence with the clinicians judgment. Fair view quality
should be interpreted as clinically useful images having some minor defects. The Scan
Assistant (SA) parameters identified after tuning are found in Table 7.1.

An example of a good score is given in Fig. 7.3a. Examples of foreshortened and
erroneous views are provided in Fig. 7.3b and Fig. 7.3c.

In order to test the assistant for feasibility, 10 medical students from the Medical
Faculty (Norwegian University of Science and Technology (NTNU), Trondheim,
Norway) were invited to examine two healthy volunteers acting as ultrasound models.
The students had previously been through a brief 1-day introductory course in
echocardiography with sparse practical training, but were otherwise unfamiliar with
use of ultrasound. The first model had easy to moderate acoustic access, while the
second had difficult acoustic access. The project was cleared by the local regional
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7.4. Results

Table 7.1: Parameters for the scan assistance algorithm.

Parameter Value

T 0.30

KLV 0.00

KRV 0.00

KLA 0.30

KRA 0.00

CLV 0.33

CRV 0.22

CLA 0.22

CRA 0.22

Tpoor 55

Tfair 70

ethics committee. Each of the students examined the models at two different occasions,
separated more than 4 days in time.

The first time the students were given a brief theoretical repetition on how to
obtain an A4CH view. Half of the students were allowed to use the scan assistant.
The other half did a regular scan with the assistant running in the background (hidden
from the user). During the second examination, it was done the other way around.
After finishing the exams, all students had made recordings with and without use of
the scan assistant. When the students used the assistant, they made two recordings.
One without displaying the view model, only using the score value and emoticon, and
one recording where also the view model was displayed. Upon image store, the score
values generated by the view assistant were stored to the dicom file.

An experienced cardiologist scored the stored recordings from 0 to 100%. Scores
below 60% were rated poor. Scores from 60 to 70% were rated as fair, while values from
70% and above were considered good. The sequence of recordings was randomized, and
the cardiologist was blinded to which of the recordings were taken with the assistant.
In order to register the effects of the assistant, the most important defects with each
recording were also registered. The improvement in cardiologist scores when using the
scan assistant was tested using the exact Wilcoxon Signed Pair Rank test.

7.4 Results

Overall, using the SA with display of the model improved the view quality in 12 of
20 cases (60%). When the model was not displayed, the SA improved the results in
8 of 20 cases (40%). The Wilcoxon Signed Pair Rank test found the improvement
when using SA to be significant both when SA was used with (p = 0.05) and without
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(a) Good view (b) Foreshortened

(c) Erroneous view

Figure 7.3: Illustration of one good and two faulty 4-chamber views using the SA with
model display. Fig. 7.3a shows a good, convergent view with a score of 87%. In Fig.
7.3b, a foreshortened view is shown, where the atria are missing, and the ventricle is
too short. This results in a score of 51%, which is not acceptable. Fig. 7.3c shows
another view, which is clearly not a 4-chamber, resulting in a score of only 5%.

(p = 0.029) model display.

The results of using the SA with displayed model are shown in Fig. 7.4. Eight of
nine (89%) cases of poor quality improved to good (3) or fair (5) quality. Another 5
cases improved from fair to good. In five cases, use of SA did not affect the results. In
one case the quality remained at the poor level. A degradation of view quality when
using SA was observed in 3 cases, whereof one case was from good to poor. All four
cases where there was a degradation or continued poor view quality when using the SA,
happened with subject 2 when the SA was used during the first session. By only looking
at the cases where the SA was used during the second session, the results improved
in eight of ten (80%) cases, and the remaining two cases were unchanged at the fair
level. Eight of eight (100%) cases of poor quality improved to acceptable quality. The
SA generally performed better on patient 1, where there was an improvement in 9 of
10 (90%) cases. One recording stayed unchanged at the good level.

The results when using the SA without showing the model are provided in Fig. 7.5.
Five of the nine (55.6%) poor cases improved to fair or good. Three cases improved
from fair to good. Elleven cases achieved the same rating with and without use of
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Figure 7.4: Improvements when using the Scan Assistant with shown model. Fig. 7.4a
presents the overall results. In Fig. 7.4b, the results are split into the two sessions and
the two subjects. The stapled lines at 59% and 69% represent the cardiologist limits
between poor/fair and fair/good quality.

SA. There was only one case of degradation, which was from good to fair. Four cases
remained poor, even when the SA was used. Unlike the results when using SA with
shown model, there were no clear differences in SA performance when splitting the
results into the different sessions and subjects. Without showing the model, the effect
of using SA was similar for both subjects in both sessions.

A summary of the errors in the recordings is presented in Fig. 7.6. There were
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presents the overall results. In Fig. 7.4b, the results are split into the two sessions and
the two subjects. The stapled lines at 59% and 69% represent the cardiologist limits
between poor/fair and fair/good quality.

SA. There was only one case of degradation, which was from good to fair. Four cases
remained poor, even when the SA was used. Unlike the results when using SA with
shown model, there were no clear differences in SA performance when splitting the
results into the different sessions and subjects. Without showing the model, the effect
of using SA was similar for both subjects in both sessions.

A summary of the errors in the recordings is presented in Fig. 7.6. There were
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Figure 7.5: Improvements when using the Scan Assistant without shown model. Fig.
7.5a presents the overall results. In Fig. 7.5b, the results are split into the two sessions
and the two subjects. The stapled lines at 59% and 69% represent the cardiologist
limits between poor/fair and fair/good quality.

more reported errors for the SA without the model being shown, compared to SA
with shown model. Table 7.2 summarizes the correspondence between the algorithm
and cardiologist view rating. It was noted that the time used for an exam frequently
increased when the scan assistant was used.
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Figure 7.6: Bar diagram illustrating the errors of the recordings.

Table 7.2: Cardiologist versus Assistant evaluation of quality

Cardiologist

A
ss
is
ta
n
t Good Fair Poor

Good 13 (21.7%) 11 (18.3%) 3 (5%)

Fair 5 (8.3%) 12 (20%) 4 (6.7%)

Poor 0 3 (5%) 9 (15%)

7.5 Discussion

The view quality improvement in 60% of the cases when showing the model and 40%
when not showing the model, indicates that the SA can be a useful tool for non-expert
users when acquiring A4CH views. This is also supported by the Wilcoxon Signed
Pair Rank test results. In particular the improvements to acceptable views in 89% of
the poor cases when showing the model (55.6% without the model), are promising.
The students were able to capture acceptable recordings in 85% of the cases with and
80% without showing the model. Without SA, only 55% were considered acceptable.

The four cases where SA with shown model caused a degraded or continued poor
view quality were further investigated. The SA recording which caused the worst
degradation, from good to poor, was oblique and uncentered. After anonymizing the
recording, the cardiologist was confronted with this recording again. He then re-rated
it to have fair view quality (60%). Still being a reduction from good quality without
SA, the result is less disturbing. The case of reduction from fair to poor was caused by
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a SA recording which was oblique and missed the LA. It was also classified as being
poor by the algorithm, so a sad face was showing on the screen when the student
chose to store the recording. The case of degradation from good to fair view quality
was caused by a slightly oblique SA recording. This was not detected by the SA,
as the atrial models had adapted to the somewhat deformed atrial cavities present
in the recording. In the last case, where the view quality remained poor, the SA
recording was oblique, uncentered and missed both the LA and RV. The image was
far from an A4CH view, but the models had succeded in partly adapting to cardiac
structures/cavities and the SA reported a score of 62%, or fair view quality.

The poor results encountered when examining subject 2 with SA and shown model
during the first session were not replicated when using SA without model display.
Subject 2 had more difficult acoustic access, and the students struggled to find an
acoustic window. It may be that showing the model in this case disturbed the users,
who were stressed and put in a new situation. The students who used the SA during
the second session knew approximately where to look for the acoustic window and
were more familiar with the situation. In this case, display of the model seemed to
improve the results. The most frequent error when using SA with shown model, was
acquisition of oblique views. Even if the left atrium was missing in only two recordings,
eight recordings were labeled as oblique. This indicates that missing atria alone is not
sufficient to detect oblique views. Recordings captured using SA without showing
the model were more frequently uncentered and missed the LA or LV lateral wall,
compared to when the model was shown, see Fig. 7.6. The results related to missing
lateral walls can be explained by the differences in centering. When the view template
model was shown centered on the screen, the students were focusing more closely on
centering the view. In most cases, the resulting view would then also contain the
LV lateral wall. The difference in the number of missing left atrias can be related to
the students working harder to detect atrial cavities when seeing atrial models on the
screen. Unfortunately, as previously discussed, this alone is no guarantee for avoiding
foreshortening.

The experiment was expected to be affected by a learning effect, which is why it
was chosen to split the group in two, and to wait several days between the sessions. It
is not possible to identify any clear learning effect from the results. For subject 1, the
students without the assistant made better recordings during the first session. This
might have been caused by the varying amount of manual guidance provided during
the first session.

Using the SA score values, it can be seen from Table 7.2 that 34 of 60
(56.7%) recordings were correctly classified. All of the seven (11.7%) cases where
recordings were considered fair (4) or good (3) by the algorithm and poor by the
cardiologist, were related to failed detection of oblique views. The most frequent
misclassification occured where the algorithm score indicated good image quality,
whereas the cardiologist rating was fair. This happened for elleven recordings, and
were mainly caused by failed detection of dark or slightly foreshortened views.

The main challenge for the SA algorithm was correct identification of oblique views.
The detection of oblique cuts is a difficult challenge when only using 2D imaging. The
algorithm currently fits a stiff atrial model to the image data. When an atrial cavity is
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present, the atrial model score will increase and indicate a correct cut of the ventricle
volume. In practice, even though the atrial model is stiff, it frequently adapts to
deformed or partly visible atria. This causes the SA to mislead the users by reporting
a too high score value, and in some cases even misclassify the view quality. Such faulty
adaption of atrial models typically occured when the images had good image quality
with respect to gain and edge clarity. This is likely related to the fundamental challenge
of differing between view quality and image quality. The SA relies on intensity based
information to provide knowledge about the view. The edge detectors either fail
because the edge is not present within the range of the model, or because the edge is
too weak to be correctly detected. The first situation is view related, while the latter
typically occurs when the general image quality is low. The system must be designed
to approve a good view having medium image quality. This involves accepting that a
number of edges are discarded due to image quality, and puts an upper bound on the
discard threshold T . When the system processes a poor view having excellent image
quality, edges are only discarded due to the view. In some cases the edge detectors
find sufficient spurious edges to overcome the discard threshold, causing an erroneous
cavity detection. In addition, the cavities which really are present in the view achieve
a very high score. The result is that some foreshortened/oblique views having a high
image quality may achieve the same score as a good view having medium image quality.

To the authors knowledge, no similar studies on real-time view assistance have
been published, although some of the schemes applied in view classification could
perhaps be modified to suit this application. First of all, that would require real-time
processing efficiency. Second, a scoring method of each view is needed. The methods
in [2–5] are all aiming to classify recordings and do not directly provide knowledge
about the ”standardness” of the view, nor are they running in real-time.

7.5.1 Limitations and further work

There are some uncertainties related to the pilot study setup. The number of subjects
and non-experts was limited. The students were not familiar with echocardiography,
except for a one hour mandatory course during their medical education. It was found
necessary to provide the students with some repetition and initial guidance during the
first session, as some of the students had no practical training. Some of the findings
suggest that this may have affected the results. The subjects in this study were
healthy volunteers. For future studies it would be interesting to also include patients
with pathology, to see whether this influences on the results.

Future algorithmic work should focus on improving the detection of foreshort-
ening/oblique cuts. It would also be interesting to extend the algorithm to the
other standard views. An assistant for the parasternal views would be of great
interest, in order to prevent non-experts from capturing oblique cuts, causing erroneous
visualizations with too small cavities and thick walls.
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Chapter 7. Real-time Scan Assistant for Echocardiography

7.6 Conclusion

A novel method for assisting non-expert users in capturing the apical 4-chamber view
in echocardiography has been presented. A Wilcoxon Signed Pair Rank test yielded a
statistically significant improvement of the view quality when the scan assistant was
used. This was independent of whether the view template model was displayed or
not. When displaying the model, use of the scan assistant improved the view quality
from poor to fair/good in 8 of 9 (89%) cases. The assistant performed well in all
cases except when examining subject two during the first session. This can be an
indication that display of the model provided too much information when the users
were stressed and unfamiliar with the situation. The results from session two and
from subject one, who had easier acoustic access, suggested that showing the model
can be beneficial. The results improved from poor to fair/good in 8 of 8 (100%)
of the cases. When using the scan assistant and showing the template model, the
non-experts captured clinically acceptable recordings in 85% of the cases, compared
to 55% without assistance. Although there are still some challenges remaining, in
particular with respect to detection of oblique views, the results suggest that use of a
real-time scan assistant can improve the results when non-experts are acquiring apical
4-chamber echocardiographic views.
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